This commit is contained in:
Harrison Chase 2022-11-20 06:21:01 -08:00
commit 2a2d3323c9
68 changed files with 2515 additions and 716 deletions

View File

@ -68,12 +68,12 @@ llm_math.run("How many of the integers between 0 and 99 inclusive are divisible
You can also use this for simple prompting pipelines, as in the below example and this [example notebook](https://github.com/hwchase17/langchain/blob/master/docs/examples/demos/simple_prompts.ipynb).
```python
from langchain import Prompt, OpenAI, LLMChain
from langchain import PromptTemplate, OpenAI, LLMChain
template = """Question: {question}
Answer: Let's think step by step."""
prompt = Prompt(template=template, input_variables=["question"])
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI(temperature=0)
llm_chain = LLMChain(prompt=prompt, llm=llm)

View File

@ -17,7 +17,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain import OpenAI, Prompt, LLMChain\n",
"from langchain import OpenAI, PromptTemplate, LLMChain\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.chains.mapreduce import MapReduceChain\n",
"\n",
@ -30,7 +30,7 @@
"\n",
"\n",
"CONCISE SUMMARY:\"\"\"\n",
"prompt = Prompt(template=_prompt, input_variables=[\"text\"])\n",
"prompt = PromptTemplate(template=_prompt, input_variables=[\"text\"])\n",
"\n",
"text_splitter = CharacterTextSplitter()\n",
"\n",
@ -85,7 +85,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
"version": "3.8.7"
}
},
"nbformat": 4,

View File

@ -12,29 +12,44 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"id": "51a54c4d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mQuestion: What NFL team won the Super Bowl in the year Justin Beiber was born?\n",
"\n",
"Answer: Let's think step by step.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' The year Justin Beiber was born was 1994. In 1994, the Dallas Cowboys won the Super Bowl.'"
]
},
"execution_count": 2,
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain import Prompt, OpenAI, LLMChain\n",
"from langchain import PromptTemplate, OpenAI, LLMChain\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"prompt = Prompt(template=template, input_variables=[\"question\"])\n",
"llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0))\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0), verbose=True)\n",
"\n",
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
@ -66,7 +81,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
"version": "3.8.7"
}
},
"nbformat": 4,

View File

@ -169,7 +169,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
"version": "3.8.7"
}
},
"nbformat": 4,

View File

@ -25,12 +25,12 @@
}
],
"source": [
"from langchain import Prompt, HuggingFaceHub, LLMChain\n",
"from langchain import PromptTemplate, HuggingFaceHub, LLMChain\n",
"\n",
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"prompt = Prompt(template=template, input_variables=[\"question\"])\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])\n",
"llm_chain = LLMChain(prompt=prompt, llm=HuggingFaceHub(repo_id=\"google/flan-t5-xl\", model_kwargs={\"temperature\":1e-10}))\n",
"\n",
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
@ -63,7 +63,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
"version": "3.8.7"
}
},
"nbformat": 4,

View File

@ -69,7 +69,7 @@
"outputs": [],
"source": [
"# Map reduce example\n",
"from langchain import Prompt\n",
"from langchain import PromptTemplate\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.chains.mapreduce import MapReduceChain\n",
"\n",
@ -81,7 +81,7 @@
"\n",
"\n",
"CONCISE SUMMARY:\"\"\"\n",
"prompt = Prompt(template=_prompt, input_variables=[\"text\"])\n",
"prompt = PromptTemplate(template=_prompt, input_variables=[\"text\"])\n",
"\n",
"text_splitter = CharacterTextSplitter()\n",
"\n",
@ -202,7 +202,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
"version": "3.8.7"
},
"vscode": {
"interpreter": {

View File

@ -17,7 +17,7 @@
"metadata": {},
"outputs": [],
"source": [
"from langchain import LLMChain, OpenAI, Cohere, HuggingFaceHub, Prompt\n",
"from langchain import LLMChain, OpenAI, Cohere, HuggingFaceHub, PromptTemplate\n",
"from langchain.model_laboratory import ModelLaboratory"
]
},
@ -88,7 +88,7 @@
"metadata": {},
"outputs": [],
"source": [
"prompt = Prompt(template=\"What is the capital of {state}?\", input_variables=[\"state\"])\n",
"prompt = PromptTemplate(template=\"What is the capital of {state}?\", input_variables=[\"state\"])\n",
"model_lab_with_prompt = ModelLaboratory.from_llms(llms, prompt=prompt)"
]
},
@ -246,7 +246,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
"version": "3.8.7"
}
},
"nbformat": 4,

View File

@ -0,0 +1,4 @@
{
"input_variables": ["input", "output"],
"template": "Input: {input}\nOutput: {output}"
}

View File

@ -0,0 +1,4 @@
[
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"}
]

View File

@ -0,0 +1,306 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "f8b01b97",
"metadata": {},
"source": [
"# Few Shot Prompt examples\n",
"Notebook showing off how canonical prompts in LangChain can be recreated as FewShotPrompts"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "18c67cc9",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.few_shot import FewShotPromptTemplate\n",
"from langchain.prompts.prompt import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2a729c9f",
"metadata": {},
"outputs": [],
"source": [
"# Self Ask with Search\n",
"\n",
"examples = [\n",
" {\n",
" \"question\": \"Who lived longer, Muhammad Ali or Alan Turing?\",\n",
" \"answer\": \"Are follow up questions needed here: Yes.\\nFollow up: How old was Muhammad Ali when he died?\\nIntermediate answer: Muhammad Ali was 74 years old when he died.\\nFollow up: How old was Alan Turing when he died?\\nIntermediate answer: Alan Turing was 41 years old when he died.\\nSo the final answer is: Muhammad Ali\"\n",
" },\n",
" {\n",
" \"question\": \"When was the founder of craigslist born?\",\n",
" \"answer\": \"Are follow up questions needed here: Yes.\\nFollow up: Who was the founder of craigslist?\\nIntermediate answer: Craigslist was founded by Craig Newmark.\\nFollow up: When was Craig Newmark born?\\nIntermediate answer: Craig Newmark was born on December 6, 1952.\\nSo the final answer is: December 6, 1952\"\n",
" },\n",
" {\n",
" \"question\": \"Who was the maternal grandfather of George Washington?\",\n",
" \"answer\": \"Are follow up questions needed here: Yes.\\nFollow up: Who was the mother of George Washington?\\nIntermediate answer: The mother of George Washington was Mary Ball Washington.\\nFollow up: Who was the father of Mary Ball Washington?\\nIntermediate answer: The father of Mary Ball Washington was Joseph Ball.\\nSo the final answer is: Joseph Ball\"\n",
" },\n",
" {\n",
" \"question\": \"Are both the directors of Jaws and Casino Royale from the same country?\",\n",
" \"answer\": \"Are follow up questions needed here: Yes.\\nFollow up: Who is the director of Jaws?\\nIntermediate Answer: The director of Jaws is Steven Spielberg.\\nFollow up: Where is Steven Spielberg from?\\nIntermediate Answer: The United States.\\nFollow up: Who is the director of Casino Royale?\\nIntermediate Answer: The director of Casino Royale is Martin Campbell.\\nFollow up: Where is Martin Campbell from?\\nIntermediate Answer: New Zealand.\\nSo the final answer is: No\"\n",
" }\n",
"]\n",
"example_prompt = PromptTemplate(input_variables=[\"question\", \"answer\"], template=\"Question: {question}\\n{answer}\")\n",
"\n",
"prompt = FewShotPromptTemplate(\n",
" examples=examples, \n",
" example_prompt=example_prompt, \n",
" suffix=\"Question: {input}\", \n",
" input_variables=[\"input\"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "95fc0059",
"metadata": {},
"outputs": [],
"source": [
"# ReAct\n",
"\n",
"examples = [\n",
" {\n",
" \"question\": \"What is the elevation range for the area that the eastern sector of the Colorado orogeny extends into?\",\n",
" \"answer\": \"Thought 1: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado orogeny extends into, then find the elevation range of that area.\\nAction 1: Search[Colorado orogeny]\\nObservation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and surrounding areas.\\nThought 2: It does not mention the eastern sector. So I need to look up eastern sector.\\nAction 2: Lookup[eastern sector]\\nObservation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called the Central Plains orogeny.\\nThought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I need to search High Plains and find its elevation range.\\nAction 3: Search[High Plains]\\nObservation 3: High Plains refers to one of two distinct land regions\\nThought 4: I need to instead search High Plains (United States).\\nAction 4: Search[High Plains (United States)]\\nObservation 4: The High Plains are a subregion of the Great Plains. From east to west, the High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130 m).[3]\\nThought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer is 1,800 to 7,000 ft.\\nAction 5: Finish[1,800 to 7,000 ft]\"\n",
" },\n",
" {\n",
" \"question\": \"Musician and satirist Allie Goertz wrote a song about the \\\"The Simpsons\\\" character Milhouse, who Matt Groening named after who?\",\n",
" \"answer\": \"Thought 1: The question simplifies to \\\"The Simpsons\\\" character Milhouse is named after who. I only need to search Milhouse and find who it is named after.\\nAction 1: Search[Milhouse]\\nObservation 1: Milhouse Mussolini Van Houten is a recurring character in the Fox animated television series The Simpsons voiced by Pamela Hayden and created by Matt Groening.\\nThought 2: The paragraph does not tell who Milhouse is named after, maybe I can look up \\\"named after\\\".\\nAction 2: Lookup[named after]\\nObservation 2: (Result 1 / 1) Milhouse was named after U.S. president Richard Nixon, whose middle name was Milhous.\\nThought 3: Milhouse was named after U.S. president Richard Nixon, so the answer is Richard Nixon.\\nAction 3: Finish[Richard Nixon]\"\n",
" },\n",
" {\n",
" \"question\": \"Which documentary is about Finnish rock groups, Adam Clayton Powell or The Saimaa Gesture?\",\n",
" \"answer\": \"Thought 1: I need to search Adam Clayton Powell and The Saimaa Gesture, and find which documentary is about Finnish rock groups.\\nAction 1: Search[Adam Clayton Powell]\\nObservation 1 Could not find [Adam Clayton Powell]. Similar: [Adam Clayton Powell III, Seventh Avenue (Manhattan), Adam Clayton Powell Jr. State Office Building, Isabel Washington Powell, Adam Powell, Adam Clayton Powell (film), Giancarlo Esposito].\\nThought 2: To find the documentary, I can search Adam Clayton Powell (film).\\nAction 2: Search[Adam Clayton Powell (film)]\\nObservation 2: Adam Clayton Powell is a 1989 American documentary film directed by Richard Kilberg. The film is about the rise and fall of influential African-American politician Adam Clayton Powell Jr.[3][4] It was later aired as part of the PBS series The American Experience.\\nThought 3: Adam Clayton Powell (film) is a documentary about an African-American politician, not Finnish rock groups. So the documentary about Finnish rock groups must instead be The Saimaa Gesture.\\nAction 3: Finish[The Saimaa Gesture]\"\n",
" },\n",
" {\n",
" \"question\": \"What profession does Nicholas Ray and Elia Kazan have in common?\",\n",
" \"answer\": \"Thought 1: I need to search Nicholas Ray and Elia Kazan, find their professions, then find the profession they have in common.\\nAction 1: Search[Nicholas Ray]\\nObservation 1: Nicholas Ray (born Raymond Nicholas Kienzle Jr., August 7, 1911 - June 16, 1979) was an American film director, screenwriter, and actor best known for the 1955 film Rebel Without a Cause.\\nThought 2: Professions of Nicholas Ray are director, screenwriter, and actor. I need to search Elia Kazan next and find his professions.\\nAction 2: Search[Elia Kazan]\\nObservation 2: Elia Kazan was an American film and theatre director, producer, screenwriter and actor.\\nThought 3: Professions of Elia Kazan are director, producer, screenwriter, and actor. So profession Nicholas Ray and Elia Kazan have in common is director, screenwriter, and actor.\\nAction 3: Finish[director, screenwriter, actor]\"\n",
" },\n",
" {\n",
" \"question\": \"Which magazine was started first Arthurs Magazine or First for Women?\",\n",
" \"answer\": \"Thought 1: I need to search Arthurs Magazine and First for Women, and find which was started first.\\nAction 1: Search[Arthurs Magazine]\\nObservation 1: Arthurs Magazine (1844-1846) was an American literary periodical published in Philadelphia in the 19th century.\\nThought 2: Arthurs Magazine was started in 1844. I need to search First for Women next.\\nAction 2: Search[First for Women]\\nObservation 2: First for Women is a womans magazine published by Bauer Media Group in the USA.[1] The magazine was started in 1989.\\nThought 3: First for Women was started in 1989. 1844 (Arthurs Magazine) < 1989 (First for Women), so Arthurs Magazine was started first.\\nAction 3: Finish[Arthurs Magazine]\"\n",
" },\n",
" {\n",
" \"question\": \"Were Pavel Urysohn and Leonid Levin known for the same type of work?\",\n",
" \"answer\": \"Thought 1: I need to search Pavel Urysohn and Leonid Levin, find their types of work, then find if they are the same.\\nAction 1: Search[Pavel Urysohn]\\nObservation 1: Pavel Samuilovich Urysohn (February 3, 1898 - August 17, 1924) was a Soviet mathematician who is best known for his contributions in dimension theory.\\nThought 2: Pavel Urysohn is a mathematician. I need to search Leonid Levin next and find its type of work.\\nAction 2: Search[Leonid Levin]\\nObservation 2: Leonid Anatolievich Levin is a Soviet-American mathematician and computer scientist.\\nThought 3: Leonid Levin is a mathematician and computer scientist. So Pavel Urysohn and Leonid Levin have the same type of work.\\nAction 3: Finish[yes]\"\n",
" }\n",
"]\n",
"example_prompt = PromptTemplate(input_variables=[\"question\", \"answer\"], template=\"Question: {question}\\n{answer}\")\n",
"\n",
"prompt = FewShotPrompt(\n",
" examples=examples, \n",
" example_prompt=example_prompt, \n",
" suffix=\"Question: {input}\", \n",
" input_variables=[\"input\"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "897d4e08",
"metadata": {},
"outputs": [],
"source": [
"# LLM Math\n",
"examples = [\n",
" {\n",
" \"question\": \"What is 37593 * 67?\",\n",
" \"answer\": \"```python\\nprint(37593 * 67)\\n```\\n```output\\n2518731\\n```\\nAnswer: 2518731\"\n",
" }\n",
"]\n",
"example_prompt = PromptTemplate(input_variables=[\"question\", \"answer\"], template=\"Question: {question}\\n\\n{answer}\")\n",
"\n",
"prompt = FewShotPromptTemplate(\n",
" examples=examples, \n",
" example_prompt=example_prompt, \n",
" suffix=\"Question: {input}\", \n",
" input_variables=[\"input\"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7ab7379f",
"metadata": {},
"outputs": [],
"source": [
"# NatBot\n",
"example_seperator = \"==================================================\"\n",
"content_1 = \"\"\"<link id=1>About</link>\n",
"<link id=2>Store</link>\n",
"<link id=3>Gmail</link>\n",
"<link id=4>Images</link>\n",
"<link id=5>(Google apps)</link>\n",
"<link id=6>Sign in</link>\n",
"<img id=7 alt=\"(Google)\"/>\n",
"<input id=8 alt=\"Search\"></input>\n",
"<button id=9>(Search by voice)</button>\n",
"<button id=10>(Google Search)</button>\n",
"<button id=11>(I'm Feeling Lucky)</button>\n",
"<link id=12>Advertising</link>\n",
"<link id=13>Business</link>\n",
"<link id=14>How Search works</link>\n",
"<link id=15>Carbon neutral since 2007</link>\n",
"<link id=16>Privacy</link>\n",
"<link id=17>Terms</link>\n",
"<text id=18>Settings</text>\"\"\"\n",
"content_2 = \"\"\"<link id=1>About</link>\n",
"<link id=2>Store</link>\n",
"<link id=3>Gmail</link>\n",
"<link id=4>Images</link>\n",
"<link id=5>(Google apps)</link>\n",
"<link id=6>Sign in</link>\n",
"<img id=7 alt=\"(Google)\"/>\n",
"<input id=8 alt=\"Search\"></input>\n",
"<button id=9>(Search by voice)</button>\n",
"<button id=10>(Google Search)</button>\n",
"<button id=11>(I'm Feeling Lucky)</button>\n",
"<link id=12>Advertising</link>\n",
"<link id=13>Business</link>\n",
"<link id=14>How Search works</link>\n",
"<link id=15>Carbon neutral since 2007</link>\n",
"<link id=16>Privacy</link>\n",
"<link id=17>Terms</link>\n",
"<text id=18>Settings</text>\"\"\"\n",
"content_3 = \"\"\"<button id=1>For Businesses</button>\n",
"<button id=2>Mobile</button>\n",
"<button id=3>Help</button>\n",
"<button id=4 alt=\"Language Picker\">EN</button>\n",
"<link id=5>OpenTable logo</link>\n",
"<button id=6 alt =\"search\">Search</button>\n",
"<text id=7>Find your table for any occasion</text>\n",
"<button id=8>(Date selector)</button>\n",
"<text id=9>Sep 28, 2022</text>\n",
"<text id=10>7:00 PM</text>\n",
"<text id=11>2 people</text>\n",
"<input id=12 alt=\"Location, Restaurant, or Cuisine\"></input>\n",
"<button id=13>Lets go</button>\n",
"<text id=14>It looks like you're in Peninsula. Not correct?</text>\n",
"<button id=15>Get current location</button>\n",
"<button id=16>Next</button>\"\"\"\n",
"examples = [\n",
" {\n",
" \"i\": 1,\n",
" \"content\": content_1,\n",
" \"objective\": \"Find a 2 bedroom house for sale in Anchorage AK for under $750k\",\n",
" \"current_url\": \"https://www.google.com/\",\n",
" \"command\": 'TYPESUBMIT 8 \"anchorage redfin\"'\n",
" },\n",
" {\n",
" \"i\": 2,\n",
" \"content\": content_2,\n",
" \"objective\": \"Make a reservation for 4 at Dorsia at 8pm\",\n",
" \"current_url\": \"https://www.google.com/\",\n",
" \"command\": 'TYPESUBMIT 8 \"dorsia nyc opentable\"'\n",
" },\n",
" {\n",
" \"i\": 3,\n",
" \"content\": content_3,\n",
" \"objective\": \"Make a reservation for 4 for dinner at Dorsia in New York City at 8pm\",\n",
" \"current_url\": \"https://www.opentable.com/\",\n",
" \"command\": 'TYPESUBMIT 12 \"dorsia new york city\"'\n",
" },\n",
"]\n",
"example_prompt_template=\"\"\"EXAMPLE {i}:\n",
"==================================================\n",
"CURRENT BROWSER CONTENT:\n",
"------------------\n",
"{content}\n",
"------------------\n",
"OBJECTIVE: {objective}\n",
"CURRENT URL: {current_url}\n",
"YOUR COMMAND:\n",
"{command}\"\"\"\n",
"example_prompt = PromptTemplate(input_variables=[\"i\", \"content\", \"objective\", \"current_url\", \"command\"], template=example_prompt_template)\n",
"\n",
"\n",
"prefix = \"\"\"\n",
"You are an agent controlling a browser. You are given:\n",
"\t(1) an objective that you are trying to achieve\n",
"\t(2) the URL of your current web page\n",
"\t(3) a simplified text description of what's visible in the browser window (more on that below)\n",
"You can issue these commands:\n",
"\tSCROLL UP - scroll up one page\n",
"\tSCROLL DOWN - scroll down one page\n",
"\tCLICK X - click on a given element. You can only click on links, buttons, and inputs!\n",
"\tTYPE X \"TEXT\" - type the specified text into the input with id X\n",
"\tTYPESUBMIT X \"TEXT\" - same as TYPE above, except then it presses ENTER to submit the form\n",
"The format of the browser content is highly simplified; all formatting elements are stripped.\n",
"Interactive elements such as links, inputs, buttons are represented like this:\n",
"\t\t<link id=1>text</link>\n",
"\t\t<button id=2>text</button>\n",
"\t\t<input id=3>text</input>\n",
"Images are rendered as their alt text like this:\n",
"\t\t<img id=4 alt=\"\"/>\n",
"Based on your given objective, issue whatever command you believe will get you closest to achieving your goal.\n",
"You always start on Google; you should submit a search query to Google that will take you to the best page for\n",
"achieving your objective. And then interact with that page to achieve your objective.\n",
"If you find yourself on Google and there are no search results displayed yet, you should probably issue a command\n",
"like \"TYPESUBMIT 7 \"search query\"\" to get to a more useful page.\n",
"Then, if you find yourself on a Google search results page, you might issue the command \"CLICK 24\" to click\n",
"on the first link in the search results. (If your previous command was a TYPESUBMIT your next command should\n",
"probably be a CLICK.)\n",
"Don't try to interact with elements that you can't see.\n",
"Here are some examples:\n",
"\"\"\"\n",
"suffix=\"\"\"\n",
"The current browser content, objective, and current URL follow. Reply with your next command to the browser.\n",
"CURRENT BROWSER CONTENT:\n",
"------------------\n",
"{browser_content}\n",
"------------------\n",
"OBJECTIVE: {objective}\n",
"CURRENT URL: {url}\n",
"PREVIOUS COMMAND: {previous_command}\n",
"YOUR COMMAND:\n",
"\"\"\"\n",
"PROMPT = FewShotPromptTemplate(\n",
" examples = examples,\n",
" example_prompt=example_prompt,\n",
" example_separator=example_seperator,\n",
" input_variables=[\"browser_content\", \"url\", \"previous_command\", \"objective\"],\n",
" prefix=prefix,\n",
" suffix=suffix,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce5927c6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,11 @@
{
"_type": "few_shot",
"input_variables": ["adjective"],
"prefix": "Write antonyms for the following words.",
"example_prompt": {
"input_variables": ["input", "output"],
"template": "Input: {input}\nOutput: {output}"
},
"examples": "examples.json",
"suffix": "Input: {adjective}\nOutput:"
}

View File

@ -0,0 +1,14 @@
_type: few_shot
input_variables:
["adjective"]
prefix:
Write antonyms for the following words.
example_prompt:
input_variables:
["input", "output"]
template:
"Input: {input}\nOutput: {output}"
examples:
examples.json
suffix:
"Input: {adjective}\nOutput:"

View File

@ -0,0 +1,8 @@
{
"_type": "few_shot",
"input_variables": ["adjective"],
"prefix": "Write antonyms for the following words.",
"example_prompt_path": "example_prompt.json",
"examples": "examples.json",
"suffix": "Input: {adjective}\nOutput:"
}

View File

@ -0,0 +1,14 @@
{
"_type": "few_shot",
"input_variables": ["adjective"],
"prefix": "Write antonyms for the following words.",
"example_prompt": {
"input_variables": ["input", "output"],
"template": "Input: {input}\nOutput: {output}"
},
"examples": [
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"}
],
"suffix": "Input: {adjective}\nOutput:"
}

View File

@ -25,9 +25,9 @@
},
"outputs": [],
"source": [
"from langchain.chains.react.prompt import EXAMPLES\n",
"from langchain.llms.openai import OpenAI\n",
"from langchain.example_generator import generate_example, generate_example_from_dynamic_prompt"
"from langchain.example_generator import generate_example\n",
"from langchain.prompts import PromptTemplate"
]
},
{
@ -39,26 +39,41 @@
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
"text/plain": [
"'Question: What is the elevation range for the area that the eastern sector of the\\nColorado orogeny extends into?\\nThought 1: I need to search Colorado orogeny, find the area that the eastern sector\\nof the Colorado orogeny extends into, then find the elevation range of the\\narea.\\nAction 1: Search[Colorado orogeny]\\nObservation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in\\nColorado and surrounding areas.\\nThought 2: It does not mention the eastern sector. So I need to look up eastern\\nsector.\\nAction 2: Lookup[eastern sector]\\nObservation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called\\nthe Central Plains orogeny.\\nThought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I\\nneed to search High Plains and find its elevation range.\\nAction 3: Search[High Plains]\\nObservation 3: High Plains refers to one of two distinct land regions\\nThought 4: I need to instead search High Plains (United States).\\nAction 4: Search[High Plains (United States)]\\nObservation 4: The High Plains are a subregion of the Great Plains. From east to west, the\\nHigh Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130\\nm).[3]\\nThought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer\\nis 1,800 to 7,000 ft.\\nAction 5: Finish[1,800 to 7,000 ft]'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"# print initial example for visibility\n",
"EXAMPLES[0]"
"# Use examples from ReAct\n",
"examples = [\n",
" {\n",
" \"question\": \"What is the elevation range for the area that the eastern sector of the Colorado orogeny extends into?\",\n",
" \"answer\": \"Thought 1: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado orogeny extends into, then find the elevation range of that area.\\nAction 1: Search[Colorado orogeny]\\nObservation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and surrounding areas.\\nThought 2: It does not mention the eastern sector. So I need to look up eastern sector.\\nAction 2: Lookup[eastern sector]\\nObservation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called the Central Plains orogeny.\\nThought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I need to search High Plains and find its elevation range.\\nAction 3: Search[High Plains]\\nObservation 3: High Plains refers to one of two distinct land regions\\nThought 4: I need to instead search High Plains (United States).\\nAction 4: Search[High Plains (United States)]\\nObservation 4: The High Plains are a subregion of the Great Plains. From east to west, the High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130 m).[3]\\nThought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer is 1,800 to 7,000 ft.\\nAction 5: Finish[1,800 to 7,000 ft]\"\n",
" },\n",
" {\n",
" \"question\": \"Musician and satirist Allie Goertz wrote a song about the \\\"The Simpsons\\\" character Milhouse, who Matt Groening named after who?\",\n",
" \"answer\": \"Thought 1: The question simplifies to \\\"The Simpsons\\\" character Milhouse is named after who. I only need to search Milhouse and find who it is named after.\\nAction 1: Search[Milhouse]\\nObservation 1: Milhouse Mussolini Van Houten is a recurring character in the Fox animated television series The Simpsons voiced by Pamela Hayden and created by Matt Groening.\\nThought 2: The paragraph does not tell who Milhouse is named after, maybe I can look up \\\"named after\\\".\\nAction 2: Lookup[named after]\\nObservation 2: (Result 1 / 1) Milhouse was named after U.S. president Richard Nixon, whose middle name was Milhous.\\nThought 3: Milhouse was named after U.S. president Richard Nixon, so the answer is Richard Nixon.\\nAction 3: Finish[Richard Nixon]\"\n",
" },\n",
" {\n",
" \"question\": \"Which documentary is about Finnish rock groups, Adam Clayton Powell or The Saimaa Gesture?\",\n",
" \"answer\": \"Thought 1: I need to search Adam Clayton Powell and The Saimaa Gesture, and find which documentary is about Finnish rock groups.\\nAction 1: Search[Adam Clayton Powell]\\nObservation 1 Could not find [Adam Clayton Powell]. Similar: [Adam Clayton Powell III, Seventh Avenue (Manhattan), Adam Clayton Powell Jr. State Office Building, Isabel Washington Powell, Adam Powell, Adam Clayton Powell (film), Giancarlo Esposito].\\nThought 2: To find the documentary, I can search Adam Clayton Powell (film).\\nAction 2: Search[Adam Clayton Powell (film)]\\nObservation 2: Adam Clayton Powell is a 1989 American documentary film directed by Richard Kilberg. The film is about the rise and fall of influential African-American politician Adam Clayton Powell Jr.[3][4] It was later aired as part of the PBS series The American Experience.\\nThought 3: Adam Clayton Powell (film) is a documentary about an African-American politician, not Finnish rock groups. So the documentary about Finnish rock groups must instead be The Saimaa Gesture.\\nAction 3: Finish[The Saimaa Gesture]\"\n",
" },\n",
" {\n",
" \"question\": \"What profession does Nicholas Ray and Elia Kazan have in common?\",\n",
" \"answer\": \"Thought 1: I need to search Nicholas Ray and Elia Kazan, find their professions, then find the profession they have in common.\\nAction 1: Search[Nicholas Ray]\\nObservation 1: Nicholas Ray (born Raymond Nicholas Kienzle Jr., August 7, 1911 - June 16, 1979) was an American film director, screenwriter, and actor best known for the 1955 film Rebel Without a Cause.\\nThought 2: Professions of Nicholas Ray are director, screenwriter, and actor. I need to search Elia Kazan next and find his professions.\\nAction 2: Search[Elia Kazan]\\nObservation 2: Elia Kazan was an American film and theatre director, producer, screenwriter and actor.\\nThought 3: Professions of Elia Kazan are director, producer, screenwriter, and actor. So profession Nicholas Ray and Elia Kazan have in common is director, screenwriter, and actor.\\nAction 3: Finish[director, screenwriter, actor]\"\n",
" },\n",
" {\n",
" \"question\": \"Which magazine was started first Arthurs Magazine or First for Women?\",\n",
" \"answer\": \"Thought 1: I need to search Arthurs Magazine and First for Women, and find which was started first.\\nAction 1: Search[Arthurs Magazine]\\nObservation 1: Arthurs Magazine (1844-1846) was an American literary periodical published in Philadelphia in the 19th century.\\nThought 2: Arthurs Magazine was started in 1844. I need to search First for Women next.\\nAction 2: Search[First for Women]\\nObservation 2: First for Women is a womans magazine published by Bauer Media Group in the USA.[1] The magazine was started in 1989.\\nThought 3: First for Women was started in 1989. 1844 (Arthurs Magazine) < 1989 (First for Women), so Arthurs Magazine was started first.\\nAction 3: Finish[Arthurs Magazine]\"\n",
" },\n",
" {\n",
" \"question\": \"Were Pavel Urysohn and Leonid Levin known for the same type of work?\",\n",
" \"answer\": \"Thought 1: I need to search Pavel Urysohn and Leonid Levin, find their types of work, then find if they are the same.\\nAction 1: Search[Pavel Urysohn]\\nObservation 1: Pavel Samuilovich Urysohn (February 3, 1898 - August 17, 1924) was a Soviet mathematician who is best known for his contributions in dimension theory.\\nThought 2: Pavel Urysohn is a mathematician. I need to search Leonid Levin next and find its type of work.\\nAction 2: Search[Leonid Levin]\\nObservation 2: Leonid Anatolievich Levin is a Soviet-American mathematician and computer scientist.\\nThought 3: Leonid Levin is a mathematician and computer scientist. So Pavel Urysohn and Leonid Levin have the same type of work.\\nAction 3: Finish[yes]\"\n",
" }\n",
"]\n",
"example_template = PromptTemplate(template=\"Question: {question}\\n{answer}\", input_variables=[\"question\", \"answer\"])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 5,
"id": "a7bd36bc",
"metadata": {
"pycharm": {
@ -67,12 +82,12 @@
},
"outputs": [],
"source": [
"new_example = generate_example(EXAMPLES, OpenAI())"
"new_example = generate_example(examples, OpenAI(), example_template)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 6,
"id": "e1efb008",
"metadata": {
"pycharm": {
@ -85,22 +100,15 @@
"text/plain": [
"['',\n",
" '',\n",
" 'Question: Which ocean is the worlds smallest?',\n",
" '',\n",
" 'Thought 1: I need to search for oceans and find which one is the worlds smallest.',\n",
" '',\n",
" 'Action 1: Search[oceans]',\n",
" '',\n",
" 'Observation 1: There are five oceans: the Pacific, Atlantic, Indian, Southern, and Arctic.',\n",
" '',\n",
" 'Thought 2: I need to compare the sizes of the oceans and find which one is the smallest.',\n",
" '',\n",
" 'Action 2: Compare[Pacific, Atlantic, Indian, Southern, Arctic]',\n",
" '',\n",
" 'Observation 2: The Arctic is the smallest ocean.']"
" 'Question: Is the film \"The Omen\" based on a book?',\n",
" 'Thought 1: I need to search \"The Omen\" and find if it is based on a book.',\n",
" 'Action 1: Search[\"The Omen\"]',\n",
" 'Observation 1: The Omen is a 1976 American supernatural horror film directed by Richard Donner and written by David Seltzer.',\n",
" 'Thought 2: The Omen is not based on a book.']"
]
},
"execution_count": 4,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@ -134,7 +142,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
"version": "3.8.7"
}
},
"nbformat": 4,

View File

@ -0,0 +1,540 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "43fb16cb",
"metadata": {},
"source": [
"# Prompt Management\n",
"\n",
"Managing your prompts is annoying and tedious, with everyone writing their own slightly different variants of the same ideas. But it shouldn't be this way. \n",
"\n",
"LangChain provides a standard and flexible way for specifying and managing all your prompts, as well as clear and specific terminology around them. This notebook goes through the core components of working with prompts, showing how to use them as well as explaining what they do.\n",
"\n",
"This notebook covers how to work with prompts in Python. If you are interested in how to work with serialized versions of prompts and load them from disk, see [this notebook](prompt_serialization.ipynb)."
]
},
{
"cell_type": "markdown",
"id": "890aad4d",
"metadata": {},
"source": [
"### The BasePromptTemplate Interface\n",
"\n",
"A prompt template is a mechanism for constructing a prompt to pass to the language model given some user input. Below is the interface that all different types of prompt templates should expose.\n",
"\n",
"```python\n",
"class BasePromptTemplate(ABC):\n",
"\n",
" input_variables: List[str]\n",
" \"\"\"A list of the names of the variables the prompt template expects.\"\"\"\n",
"\n",
" @abstractmethod\n",
" def format(self, **kwargs: Any) -> str:\n",
" \"\"\"Format the prompt with the inputs.\n",
"\n",
" Args:\n",
" kwargs: Any arguments to be passed to the prompt template.\n",
"\n",
" Returns:\n",
" A formatted string.\n",
"\n",
" Example:\n",
"\n",
" .. code-block:: python\n",
"\n",
" prompt.format(variable1=\"foo\")\n",
" \"\"\"\n",
"```\n",
"\n",
"The only two things that define a prompt are:\n",
"\n",
"1. `input_variables`: The user inputted variables that are needed to format the prompt.\n",
"2. `format`: A method which takes in keyword arguments are returns a formatted prompt. The keys are expected to be the input variables\n",
" \n",
"The rest of the logic of how the prompt is constructed is left up to different implementations. Let's take a look at some below."
]
},
{
"cell_type": "markdown",
"id": "cddb465e",
"metadata": {},
"source": [
"### PromptTemplate\n",
"\n",
"This is the most simple type of prompt - a string template that takes any number of input variables. The template should be formatted as a Python f-string, although we will support other formats (Jinja, Mako, etc) in the future. \n",
"\n",
"If you just want to use a hardcoded prompt template, you should use this implementation.\n",
"\n",
"Let's walk through a few examples."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "094229f4",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ab46bd2a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a joke.'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with no input variables\n",
"no_input_prompt = PromptTemplate(input_variables=[], template=\"Tell me a joke.\")\n",
"no_input_prompt.format()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c3ad0fa8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a funny joke.'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with one input variable\n",
"one_input_prompt = PromptTemplate(input_variables=[\"adjective\"], template=\"Tell me a {adjective} joke.\")\n",
"one_input_prompt.format(adjective=\"funny\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ba577dcf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Tell me a funny joke about chickens.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# An example prompt with multiple input variables\n",
"multiple_input_prompt = PromptTemplate(\n",
" input_variables=[\"adjective\", \"content\"], \n",
" template=\"Tell me a {adjective} joke about {content}.\"\n",
")\n",
"multiple_input_prompt.format(adjective=\"funny\", content=\"chickens\")"
]
},
{
"cell_type": "markdown",
"id": "1492b49d",
"metadata": {},
"source": [
"### Few Shot Prompts\n",
"\n",
"A FewShotPromptTemplate is a prompt template that includes some examples. If you have collected some examples of how the task should be done, you can insert them into prompt using this class.\n",
"\n",
"Examples are datapoints that can be included in the prompt in order to give the model more context what to do. Examples are represented as a dictionary of key-value pairs, with the key being the input (or label) name, and the value being the input (or label) value. \n",
"\n",
"In addition to the example, we also need to specify how the example should be formatted when it's inserted in the prompt. We can do this using the above `PromptTemplate`!"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3eb36972",
"metadata": {},
"outputs": [],
"source": [
"# These are some examples of a pretend task of creating antonyms.\n",
"examples = [\n",
" {\"input\": \"happy\", \"output\": \"sad\"},\n",
" {\"input\": \"tall\", \"output\": \"short\"},\n",
"]\n",
"# This how we specify how the example should be formatted.\n",
"example_prompt = PromptTemplate(\n",
" input_variables=[\"input\",\"output\"],\n",
" template=\"Input: {input}\\nOutput: {output}\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "80a91d96",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.few_shot import FewShotPromptTemplate"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7931e5f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"prompt_from_string_examples = FewShotPromptTemplate(\n",
" # These are the examples we want to insert into the prompt.\n",
" examples=examples,\n",
" # This is how we want to format the examples when we insert them into the prompt.\n",
" example_prompt=example_prompt,\n",
" # The prefix is some text that goes before the examples in the prompt.\n",
" # Usually, this consists of intructions.\n",
" prefix=\"Give the antonym of every input\",\n",
" # The suffix is some text that goes after the examples in the prompt.\n",
" # Usually, this is where the user input will go\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" # The input variables are the variables that the overall prompt expects.\n",
" input_variables=[\"adjective\"],\n",
" # The example_separator is the string we will use to join the prefix, examples, and suffix together with.\n",
" example_separator=\"\\n\\n\"\n",
" \n",
")\n",
"print(prompt_from_string_examples.format(adjective=\"big\"))"
]
},
{
"cell_type": "markdown",
"id": "bf038596",
"metadata": {},
"source": [
"### ExampleSelector\n",
"If you have a large number of examples, you may need to select which ones to include in the prompt. The ExampleSelector is the class responsible for doing so. The base interface is defined as below.\n",
"\n",
"```python\n",
"class BaseExampleSelector(ABC):\n",
" \"\"\"Interface for selecting examples to include in prompts.\"\"\"\n",
"\n",
" @abstractmethod\n",
" def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:\n",
" \"\"\"Select which examples to use based on the inputs.\"\"\"\n",
"\n",
"```\n",
"\n",
"The only method it needs to expose is a `select_examples` method. This takes in the input variables and then returns a list of examples. It is up to each specific implementation as to how those examples are selected. Let's take a look at some below."
]
},
{
"cell_type": "markdown",
"id": "861a4d1f",
"metadata": {},
"source": [
"### LengthBased ExampleSelector\n",
"\n",
"This ExampleSelector selects which examples to use based on length. This is useful when you are worried about constructing a prompt that will go over the length of the context window. For longer inputs, it will select fewer examples to include, while for shorter inputs it will select more.\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7c469c95",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.example_selector.length_based import LengthBasedExampleSelector"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0ec6d950",
"metadata": {},
"outputs": [],
"source": [
"# These are a lot of examples of a pretend task of creating antonyms.\n",
"examples = [\n",
" {\"input\": \"happy\", \"output\": \"sad\"},\n",
" {\"input\": \"tall\", \"output\": \"short\"},\n",
" {\"input\": \"energetic\", \"output\": \"lethargic\"},\n",
" {\"input\": \"sunny\", \"output\": \"gloomy\"},\n",
" {\"input\": \"windy\", \"output\": \"calm\"},\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "207e55f7",
"metadata": {},
"outputs": [],
"source": [
"example_selector = LengthBasedExampleSelector(\n",
" # These are the examples is has available to choose from.\n",
" examples=examples, \n",
" # This is the PromptTemplate being used to format the examples.\n",
" example_prompt=example_prompt, \n",
" # This is the maximum length that the formatted examples should be.\n",
" # Length is measured by the get_text_length function below.\n",
" max_length=18,\n",
" # This is the function used to get the length of a string, which is used\n",
" # to determine which examples to include. It is commented out because\n",
" # it is provided as a default value if none is specified.\n",
" # get_text_length: Callable[[str], int] = lambda x: len(re.split(\"\\n| \", x))\n",
")\n",
"dynamic_prompt = FewShotPromptTemplate(\n",
" # We provide an ExampleSelector instead of examples.\n",
" example_selector=example_selector,\n",
" example_prompt=example_prompt,\n",
" prefix=\"Give the antonym of every input\",\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" input_variables=[\"adjective\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "d00b4385",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: energetic\n",
"Output: lethargic\n",
"\n",
"Input: sunny\n",
"Output: gloomy\n",
"\n",
"Input: windy\n",
"Output: calm\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"# An example with small input, so it selects all examples.\n",
"print(dynamic_prompt.format(adjective=\"big\"))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "878bcde9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: big and huge and massive and large and gigantic and tall and bigger than everything else\n",
"Output:\n"
]
}
],
"source": [
"# An example with long input, so it selects only one example.\n",
"long_string = \"big and huge and massive and large and gigantic and tall and bigger than everything else\"\n",
"print(dynamic_prompt.format(adjective=long_string))"
]
},
{
"cell_type": "markdown",
"id": "2d007b0a",
"metadata": {},
"source": [
"### Similarity ExampleSelector\n",
"\n",
"The SemanticSimilarityExampleSelector selects examples based on which examples are most similar to the inputs. It does this by finding the examples with the embeddings that have the greatest cosine similarity with the inputs.\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "241bfe80",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.example_selector.semantic_similarity import SemanticSimilarityExampleSelector\n",
"from langchain.vectorstores import FAISS\n",
"from langchain.embeddings import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "50d0a701",
"metadata": {},
"outputs": [],
"source": [
"example_selector = SemanticSimilarityExampleSelector.from_examples(\n",
" # This is the list of examples available to select from.\n",
" examples, \n",
" # This is the embedding class used to produce embeddings which are used to measure semantic similarity.\n",
" OpenAIEmbeddings(), \n",
" # This is the VectorStore class that is used to store the embeddings and do a similarity search over.\n",
" FAISS, \n",
" # This is the number of examples to produce.\n",
" k=1\n",
")\n",
"similar_prompt = FewShotPromptTemplate(\n",
" # We provide an ExampleSelector instead of examples.\n",
" example_selector=example_selector,\n",
" example_prompt=example_prompt,\n",
" prefix=\"Give the antonym of every input\",\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" input_variables=[\"adjective\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "4c8fdf45",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: worried\n",
"Output:\n"
]
}
],
"source": [
"# Input is a feeling, so should select the happy/sad example\n",
"print(similar_prompt.format(adjective=\"worried\"))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "829af21a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: fat\n",
"Output:\n"
]
}
],
"source": [
"# Input is a measurment, so should select the tall/short example\n",
"print(similar_prompt.format(adjective=\"fat\"))"
]
},
{
"cell_type": "markdown",
"id": "dbc32551",
"metadata": {},
"source": [
"### Serialization\n",
"\n",
"PromptTemplates and examples can be serialized and loaded from disk, making it easy to share and store prompts. For a detailed walkthrough on how to do that, see [this notebook](prompt_serialization.ipynb)."
]
},
{
"cell_type": "markdown",
"id": "1e1e13c6",
"metadata": {},
"source": [
"### Customizability\n",
"The above covers all the ways currently supported in LangChain to represent prompts and example selectors. However, due to the simple interface that the base classes (`BasePromptTemplate`, `BaseExampleSelector`) expose, it should be easy to subclass them and write your own implementation in your own codebase. And of course, if you'd like to contribute that back to LangChain, we'd love that :)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c746d6f4",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -1,179 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d7467b67",
"metadata": {},
"source": [
"# Optimized Prompts\n",
"\n",
"This example showcases how using the OptimizedPrompt class enables selection of the most relevant examples to include as few-shot examples in the prompt."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e9e2b50b",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains.react.prompt import EXAMPLES, SUFFIX\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.example_generator import generate_example, generate_example_from_dynamic_prompt\n",
"from langchain.llms.openai import OpenAI\n",
"from langchain.prompts.optimized import OptimizedPrompt\n",
"from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch\n",
"from langchain.vectorstores.faiss_search import FAISS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "cb069606",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Question: What is the elevation range for the area that the eastern sector of the\\nColorado orogeny extends into?\\nThought 1: I need to search Colorado orogeny, find the area that the eastern sector\\nof the Colorado orogeny extends into, then find the elevation range of the\\narea.\\nAction 1: Search[Colorado orogeny]\\nObservation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in\\nColorado and surrounding areas.\\nThought 2: It does not mention the eastern sector. So I need to look up eastern\\nsector.\\nAction 2: Lookup[eastern sector]\\nObservation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called\\nthe Central Plains orogeny.\\nThought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I\\nneed to search High Plains and find its elevation range.\\nAction 3: Search[High Plains]\\nObservation 3: High Plains refers to one of two distinct land regions\\nThought 4: I need to instead search High Plains (United States).\\nAction 4: Search[High Plains (United States)]\\nObservation 4: The High Plains are a subregion of the Great Plains. From east to west, the\\nHigh Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130\\nm).[3]\\nThought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer\\nis 1,800 to 7,000 ft.\\nAction 5: Finish[1,800 to 7,000 ft]'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"EXAMPLES[0]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5fda75a4",
"metadata": {},
"outputs": [],
"source": [
"prompt = OptimizedPrompt.from_examples(\n",
" examples=EXAMPLES, \n",
" suffix=SUFFIX, \n",
" input_variables=[\"input\"],\n",
" embeddings=OpenAIEmbeddings(),\n",
" vectorstore_cls=FAISS\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7a601df8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"Question: What is the elevation range for the area that the eastern sector of the\n",
"Colorado orogeny extends into?\n",
"Thought 1: I need to search Colorado orogeny, find the area that the eastern sector\n",
"of the Colorado orogeny extends into, then find the elevation range of the\n",
"area.\n",
"Action 1: Search[Colorado orogeny]\n",
"Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in\n",
"Colorado and surrounding areas.\n",
"Thought 2: It does not mention the eastern sector. So I need to look up eastern\n",
"sector.\n",
"Action 2: Lookup[eastern sector]\n",
"Observation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called\n",
"the Central Plains orogeny.\n",
"Thought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I\n",
"need to search High Plains and find its elevation range.\n",
"Action 3: Search[High Plains]\n",
"Observation 3: High Plains refers to one of two distinct land regions\n",
"Thought 4: I need to instead search High Plains (United States).\n",
"Action 4: Search[High Plains (United States)]\n",
"Observation 4: The High Plains are a subregion of the Great Plains. From east to west, the\n",
"High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130\n",
"m).[3]\n",
"Thought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer\n",
"is 1,800 to 7,000 ft.\n",
"Action 5: Finish[1,800 to 7,000 ft]\n",
"\n",
"\n",
"\n",
"Question: What is the highest mountain peak in Asia?\n"
]
}
],
"source": [
"print(prompt.format(k=1, input=\"What is the highest mountain peak in Asia?\"))"
]
},
{
"cell_type": "markdown",
"id": "a5dc3525",
"metadata": {},
"source": [
"## Requires having ElasticSearch setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bbd92d08",
"metadata": {},
"outputs": [],
"source": [
"prompt = OptimizedPrompt.from_examples(\n",
" examples=EXAMPLES, \n",
" suffix=SUFFIX, \n",
" input_variables=[\"input\"],\n",
" embeddings=OpenAIEmbeddings(),\n",
" vectorstore_cls=ElasticVectorSearch,\n",
" elasticsearch_url=\"http://localhost:9200\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bd91f408",
"metadata": {},
"outputs": [],
"source": [
"print(prompt.format(k=1, input=\"What is the highest mountain peak in Asia?\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "716165c2",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,538 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "43fb16cb",
"metadata": {},
"source": [
"# Prompt Serialization\n",
"\n",
"It is often preferrable to store prompts not as python code but as files. This can make it easy to share, store, and version prompts. This notebook covers how to do that in LangChain, walking through all the different types of prompts and the different serialization options.\n",
"\n",
"At a high level, the following design principles are applied to serialization:\n",
"1. Both JSON and YAML are supported. We want to support serialization methods are human readable on disk, and YAML and JSON are two of the most popular methods for that. Note that this rule applies to prompts. For other assets, like Examples, different serialization methods may be supported.\n",
"2. We support specifying everything in one file, or storing different components (templates, examples, etc) in different files and referencing them. For some cases, storing everything in file makes the most sense, but for others it is preferrable to split up some of the assets (long templates, large examples, reusable components). LangChain supports both."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2c8d7587",
"metadata": {},
"outputs": [],
"source": [
"# All prompts are loading through the `load_prompt` function.\n",
"from langchain.prompts.loading import load_prompt"
]
},
{
"cell_type": "markdown",
"id": "cddb465e",
"metadata": {},
"source": [
"## PromptTemplate\n",
"\n",
"This section covers examples for loading a PromptTemplate."
]
},
{
"cell_type": "markdown",
"id": "4d4b40f2",
"metadata": {},
"source": [
"### Loading from YAML\n",
"This shows an example of loading a PromptTemplate from YAML."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "2d6e5117",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"input_variables:\r\n",
" [\"adjective\", \"content\"]\r\n",
"template: \r\n",
" Tell me a {adjective} joke about {content}.\r\n"
]
}
],
"source": [
"!cat simple_prompt.yaml"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "4f4ca686",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tell me a funny joke about chickens.\n"
]
}
],
"source": [
"prompt = load_prompt(\"simple_prompt.yaml\")\n",
"print(prompt.format(adjective=\"funny\", content=\"chickens\"))"
]
},
{
"cell_type": "markdown",
"id": "362eadb2",
"metadata": {},
"source": [
"### Loading from JSON\n",
"This shows an example of loading a PromptTemplate from JSON."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "510def23",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\r\n",
" \"input_variables\": [\"adjective\", \"content\"],\r\n",
" \"template\": \"Tell me a {adjective} joke about {content}.\"\r\n",
"}\r\n"
]
}
],
"source": [
"!cat simple_prompt.json"
]
},
{
"cell_type": "markdown",
"id": "d788a83c",
"metadata": {},
"source": [
"### Loading Template from a File\n",
"This shows an example of storing the template in a separate file and then referencing it in the config. Notice that the key changes from `template` to `template_path`."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "5547760d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tell me a {adjective} joke about {content}."
]
}
],
"source": [
"!cat simple_template.txt"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "9cb13ac5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\r\n",
" \"input_variables\": [\"adjective\", \"content\"],\r\n",
" \"template_path\": \"simple_template.txt\"\r\n",
"}\r\n"
]
}
],
"source": [
"!cat simple_prompt_with_template_file.json"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "762cb4bf",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tell me a funny joke about chickens.\n"
]
}
],
"source": [
"prompt = load_prompt(\"simple_prompt_with_template_file.json\")\n",
"print(prompt.format(adjective=\"funny\", content=\"chickens\"))"
]
},
{
"cell_type": "markdown",
"id": "2ae191cc",
"metadata": {},
"source": [
"## FewShotPromptTemplate\n",
"\n",
"This section covers examples for loading few shot prompt templates."
]
},
{
"cell_type": "markdown",
"id": "9828f94c",
"metadata": {},
"source": [
"### Examples\n",
"This shows an example of what examples stored as json might look like."
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "b21f5b95",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[\r\n",
" {\"input\": \"happy\", \"output\": \"sad\"},\r\n",
" {\"input\": \"tall\", \"output\": \"short\"}\r\n",
"]\r\n"
]
}
],
"source": [
"!cat examples.json"
]
},
{
"cell_type": "markdown",
"id": "8e300335",
"metadata": {},
"source": [
"### Loading from YAML\n",
"This shows an example of loading a few shot example from YAML."
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "e2bec0fc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"_type: few_shot\r\n",
"input_variables:\r\n",
" [\"adjective\"]\r\n",
"prefix: \r\n",
" Write antonyms for the following words.\r\n",
"example_prompt:\r\n",
" input_variables:\r\n",
" [\"input\", \"output\"]\r\n",
" template:\r\n",
" \"Input: {input}\\nOutput: {output}\"\r\n",
"examples:\r\n",
" examples.json\r\n",
"suffix:\r\n",
" \"Input: {adjective}\\nOutput:\"\r\n"
]
}
],
"source": [
"!cat few_shot_prompt.yaml"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "98c8f356",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Write antonyms for the following words.\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: funny\n",
"Output:\n"
]
}
],
"source": [
"prompt = load_prompt(\"few_shot_prompt.yaml\")\n",
"print(prompt.format(adjective=\"funny\"))"
]
},
{
"cell_type": "markdown",
"id": "4870aa9d",
"metadata": {},
"source": [
"### Loading from JSON\n",
"This shows an example of loading a few shot example from JSON."
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "9d996a86",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\r\n",
" \"_type\": \"few_shot\",\r\n",
" \"input_variables\": [\"adjective\"],\r\n",
" \"prefix\": \"Write antonyms for the following words.\",\r\n",
" \"example_prompt\": {\r\n",
" \"input_variables\": [\"input\", \"output\"],\r\n",
" \"template\": \"Input: {input}\\nOutput: {output}\"\r\n",
" },\r\n",
" \"examples\": \"examples.json\",\r\n",
" \"suffix\": \"Input: {adjective}\\nOutput:\"\r\n",
"} \r\n"
]
}
],
"source": [
"!cat few_shot_prompt.json"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "dd2c10bb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Write antonyms for the following words.\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: funny\n",
"Output:\n"
]
}
],
"source": [
"prompt = load_prompt(\"few_shot_prompt.json\")\n",
"print(prompt.format(adjective=\"funny\"))"
]
},
{
"cell_type": "markdown",
"id": "9d23faf4",
"metadata": {},
"source": [
"### Examples in the Config\n",
"This shows an example of referencing the examples directly in the config."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "6cd781ef",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\r\n",
" \"_type\": \"few_shot\",\r\n",
" \"input_variables\": [\"adjective\"],\r\n",
" \"prefix\": \"Write antonyms for the following words.\",\r\n",
" \"example_prompt\": {\r\n",
" \"input_variables\": [\"input\", \"output\"],\r\n",
" \"template\": \"Input: {input}\\nOutput: {output}\"\r\n",
" },\r\n",
" \"examples\": [\r\n",
" {\"input\": \"happy\", \"output\": \"sad\"},\r\n",
" {\"input\": \"tall\", \"output\": \"short\"}\r\n",
" ],\r\n",
" \"suffix\": \"Input: {adjective}\\nOutput:\"\r\n",
"} \r\n"
]
}
],
"source": [
"!cat few_shot_prompt_examples_in.json"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "533ab8a7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Write antonyms for the following words.\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: funny\n",
"Output:\n"
]
}
],
"source": [
"prompt = load_prompt(\"few_shot_prompt_examples_in.json\")\n",
"print(prompt.format(adjective=\"funny\"))"
]
},
{
"cell_type": "markdown",
"id": "2e86139e",
"metadata": {},
"source": [
"### Example Prompt from a File\n",
"This shows an example of loading the PromptTemplate that is used to format the examples from a separate file. Note that the key changes from `example_prompt` to `example_prompt_path`."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "0b6dd7b8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\r\n",
" \"input_variables\": [\"input\", \"output\"],\r\n",
" \"template\": \"Input: {input}\\nOutput: {output}\" \r\n",
"}\r\n"
]
}
],
"source": [
"!cat example_prompt.json"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "76a1065d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\r\n",
" \"_type\": \"few_shot\",\r\n",
" \"input_variables\": [\"adjective\"],\r\n",
" \"prefix\": \"Write antonyms for the following words.\",\r\n",
" \"example_prompt_path\": \"example_prompt.json\",\r\n",
" \"examples\": \"examples.json\",\r\n",
" \"suffix\": \"Input: {adjective}\\nOutput:\"\r\n",
"} \r\n"
]
}
],
"source": [
"!cat few_shot_prompt_example_prompt.json "
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "744d275d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Write antonyms for the following words.\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: funny\n",
"Output:\n"
]
}
],
"source": [
"prompt = load_prompt(\"few_shot_prompt_example_prompt.json\")\n",
"print(prompt.format(adjective=\"funny\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dcfc7176",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,4 @@
{
"input_variables": ["adjective", "content"],
"template": "Tell me a {adjective} joke about {content}."
}

View File

@ -0,0 +1,4 @@
input_variables:
["adjective", "content"]
template:
Tell me a {adjective} joke about {content}.

View File

@ -0,0 +1,4 @@
{
"input_variables": ["adjective", "content"],
"template_path": "simple_template.txt"
}

View File

@ -0,0 +1 @@
Tell me a {adjective} joke about {content}.

View File

@ -3,11 +3,13 @@
This section goes over the core concepts of LangChain.
Understanding these will go a long way in helping you understand the codebase and how to construct chains.
## Prompts
Prompts generically have a `format` method that takes in variables and returns a formatted string.
## PromptTemplates
PromptTemplates generically have a `format` method that takes in variables and returns a formatted string.
The most simple implementation of this is to have a template string with some variables in it, and then format it with the incoming variables.
More complex iterations dynamically construct the template string from few shot examples, etc.
For a more detailed explanation of how LangChain approaches prompts and prompt templates, see [here](prompts.md).
## LLMs
Wrappers around Large Language Models (in particular, the `generate` ability of large language models) are some of the core functionality of LangChain.
These wrappers are classes that are callable: they take in an input string, and return the generated output string.

138
docs/explanation/prompts.md Normal file
View File

@ -0,0 +1,138 @@
# Prompts
Prompts and all the tooling around them are integral to working with language models, and therefor
really important to get right, from both and interface and naming perspective. This is a "design doc"
of sorts explaining how we think about prompts and the related concepts, and why the interfaces
for working with are the way they are in LangChain.
For a more code-based walkthrough of all these concept, checkout our example [here](/examples/prompts/prompt_management)
## Prompt
### Concept
A prompt is the final string that gets fed into the language model.
### LangChain Implementation
In LangChain a prompt is represented as just a string.
## Input Variables
### Concept
Input variables are parts of a prompt that are not known until runtime, eg could be user provided.
### LangChain Implementation
In LangChain input variables are just represented as a dictionary of key-value pairs, with the key
being the variable name and the value being the variable value.
## Examples
### Concept
Examples are basically datapoints that can be used to teach the model what to do. These can be included
in prompts to better instruct the model on what to do.
### LangChain Implementation
In LangChain examples are represented as a dictionary of key-value pairs, with the key being the feature
(or label) name, and the value being the feature (or label) value.
## Example Selector
### Concept
If you have a large number of examples, you may need to select which ones to include in the prompt. The
Example Selector is the class responsible for doing so.
### LangChain Implementation
#### BaseExampleSelector
In LangChain there is a BaseExampleSelector that exposes the following interface
```python
class BaseExampleSelector:
def select_examples(self, input_variables: dict):
```
Notice that it does not take in examples at runtime when it's selecting them - those are assumed to have been provided ahead of time.
#### LengthExampleSelector
The LengthExampleSelector selects examples based on the length of the input variables.
This is useful when you are worried about constructing a prompt that will go over the length
of the context window. For longer inputs, it will select fewer examples to include, while for
shorter inputs it will select more.
#### SemanticSimilarityExampleSelector
The SemanticSimilarityExampleSelector selects examples based on which examples are most similar
to the inputs. It does this by finding the examples with the embeddings that have the greatest
cosine similarity with the inputs.
## Prompt Template
### Concept
The prompts that get fed into the language model are nearly always not hardcoded, but rather a combination
of parts, including Examples and Input Variables. A prompt template is responsible
for taking those parts and constructing a prompt.
### LangChain Implementation
#### BasePromptTemplate
In LangChain there is a BasePromptTemplate that exposes the following interface
```python
class BasePromptTemplate:
@property
def input_variables(self) -> List[str]:
def format(self, **kwargs) -> str:
```
The input variables property is used to provide introspection of the PromptTemplate and know
what inputs it expects. The format method takes in input variables and returns the prompt.
#### PromptTemplate
The PromptTemplate implementation is the most simple form of a prompt template. It consists of three parts:
- input variables: which variables this prompt template expects
- template: the template into which these variables will be formatted
- template format: the format of the template (eg mustache, python f-strings, etc)
For example, if I was making an application that took a user inputted concept and asked a language model
to make a joke about that concept, I might use this specification for the PromptTemplate
- input variables = `["thing"]`
- template = `"Tell me a joke about {thing}"`
- template format = `"f-string"`
#### FewShotPromptTemplate
A FewShotPromptTemplate is a Prompt Template that includes some examples. It consists of:
- examples OR example selector: a list of examples to use, or an Example Selector to select which examples to use
- example prompt template: a Prompt Template responsible for taking an individual example (a dictionary) and turning it into a string to be used in the prompt.
- prefix: the template put in the prompt before listing any examples
- suffix: the template put in the prompt after listing any examples
- example separator: a string separator which is used to join the prefix, the examples, and the suffix together
For example, if I wanted to turn the above example into a few shot prompt, this is what it would
look like:
First I would collect some examples, like
```python
examples = [
{"concept": "chicken", "joke": "Why did the chicken cross the road?"},
...
]
```
I would then make sure to define a prompt template for how each example should be formatted
when inserted into the prompt:
```python
prompt_template = PromptTemplate(
input_variables=["concept", "joke"],
template="Tell me a joke about {concept}\n{joke}"
)
```
Then, I would define the components as:
- examples: The above examples
- example_prompt: The above example prompt
- prefix = `"You are a comedian telling jokes on demand."`
- suffix = `"Tell me a joke about {concept}"`
- input variables = `["concept"]`
- template format = `"f-string"`

View File

@ -12,9 +12,10 @@ This is easy to do with LangChain!
First lets define the prompt:
```python
from langchain.prompts import Prompt
prompt = Prompt(
input_variables=["product"],
from langchain.prompts import PromptTemplate
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
```
@ -35,4 +36,4 @@ chain.run("colorful socks")
There we go! There's the first chain.
That is it for the Getting Started example.
As a next step, we would suggest checking out the more complex chains in the [Demos section](/examples/demos.rst)
As a next step, we would suggest checking out the more complex chains in the [Demos section](/examples/demos)

View File

@ -56,6 +56,7 @@ common tasks or cool demos.
installation.md
integrations.md
modules/prompt
modules/example_selector
modules/llms
modules/embeddings
modules/text_splitter
@ -72,8 +73,9 @@ see detailed information about the various classes, methods, and APIs.
:caption: Resources
:name: resources
core_concepts.md
glossary.md
explanation/core_concepts.md
explanation/prompts.md
explanation/glossary.md
Discord <https://discord.gg/6adMQxSpJS>
Higher level, conceptual explanations of the LangChain components.

View File

@ -0,0 +1,5 @@
:mod:`langchain.prompts.example_selector`
=========================================
.. automodule:: langchain.prompts.example_selector
:members:

View File

@ -18,7 +18,7 @@ from langchain.chains import (
)
from langchain.docstore import Wikipedia
from langchain.llms import Cohere, HuggingFaceHub, OpenAI
from langchain.prompts import BasePrompt, DynamicPrompt, Prompt
from langchain.prompts import BasePromptTemplate, PromptTemplate
from langchain.sql_database import SQLDatabase
from langchain.vectorstores import FAISS, ElasticVectorSearch
@ -30,9 +30,9 @@ __all__ = [
"SerpAPIChain",
"Cohere",
"OpenAI",
"BasePrompt",
"BasePromptTemplate",
"DynamicPrompt",
"Prompt",
"PromptTemplate",
"ReActChain",
"Wikipedia",
"HuggingFaceHub",

View File

@ -4,8 +4,9 @@ from typing import Any, Dict, List
from pydantic import BaseModel, Extra
from langchain.chains.base import Chain
from langchain.input import print_text
from langchain.llms.base import LLM
from langchain.prompts.base import BasePrompt
from langchain.prompts.base import BasePromptTemplate
class LLMChain(Chain, BaseModel):
@ -16,11 +17,13 @@ class LLMChain(Chain, BaseModel):
from langchain import LLMChain, OpenAI, Prompt
prompt_template = "Tell me a {adjective} joke"
prompt = Prompt(input_variables=["adjective"], template=prompt_template)
prompt = PromptTemplate(
input_variables=["adjective"], template=prompt_template
)
llm = LLMChain(llm=OpenAI(), prompt=prompt)
"""
prompt: BasePrompt
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: LLM
"""LLM wrapper to use."""
@ -51,7 +54,9 @@ class LLMChain(Chain, BaseModel):
def _call(self, inputs: Dict[str, Any]) -> Dict[str, str]:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format(**selected_inputs)
if self.verbose:
print("Prompt after formatting:")
print_text(prompt, color="green", end="\n")
kwargs = {}
if "stop" in inputs:
kwargs["stop"] = inputs["stop"]

View File

@ -1,5 +1,5 @@
# flake8: noqa
from langchain.prompts.prompt import Prompt
from langchain.prompts.prompt import PromptTemplate
_PROMPT_TEMPLATE = """You are GPT-3, and you can't do math.
@ -35,4 +35,4 @@ Answer: 2518731
Question: {question}"""
PROMPT = Prompt(input_variables=["question"], template=_PROMPT_TEMPLATE)
PROMPT = PromptTemplate(input_variables=["question"], template=_PROMPT_TEMPLATE)

View File

@ -11,7 +11,7 @@ from pydantic import BaseModel, Extra
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from langchain.prompts.base import BasePrompt
from langchain.prompts.base import BasePromptTemplate
from langchain.text_splitter import TextSplitter
@ -29,7 +29,7 @@ class MapReduceChain(Chain, BaseModel):
@classmethod
def from_params(
cls, llm: LLM, prompt: BasePrompt, text_splitter: TextSplitter
cls, llm: LLM, prompt: BasePromptTemplate, text_splitter: TextSplitter
) -> "MapReduceChain":
"""Construct a map-reduce chain that uses the chain for map and reduce."""
llm_chain = LLMChain(llm=llm, prompt=prompt)

View File

@ -9,7 +9,7 @@ from langchain.chains.mrkl.prompt import BASE_TEMPLATE
from langchain.chains.router import LLMRouterChain
from langchain.input import ChainedInput, get_color_mapping
from langchain.llms.base import LLM
from langchain.prompts import Prompt
from langchain.prompts import BasePromptTemplate, PromptTemplate
FINAL_ANSWER_ACTION = "Final Answer: "
@ -59,7 +59,7 @@ class MRKLRouterChain(LLMRouterChain):
)
tool_names = ", ".join([chain.action_name for chain in chain_configs])
template = BASE_TEMPLATE.format(tools=tools, tool_names=tool_names)
prompt = Prompt(template=template, input_variables=["input"])
prompt = PromptTemplate(template=template, input_variables=["input"])
llm_chain = LLMChain(llm=llm, prompt=prompt)
stops = ["\nObservation"]
super().__init__(llm_chain=llm_chain, stops=stops, **kwargs)
@ -77,7 +77,7 @@ class MRKLChain(Chain, BaseModel):
from langchain import OpenAI, Prompt, MRKLChain
from langchain.chains.mrkl.base import ChainConfig
llm = OpenAI(temperature=0)
prompt = Prompt(...)
prompt = PromptTemplate(...)
action_to_chain_map = {...}
mrkl = MRKLChain(
llm=llm,

View File

@ -1,5 +1,5 @@
# flake8: noqa
from langchain.prompts.prompt import Prompt
from langchain.prompts.prompt import PromptTemplate
_PROMPT_TEMPLATE = """
You are an agent controlling a browser. You are given:
@ -138,7 +138,7 @@ CURRENT URL: {url}
PREVIOUS COMMAND: {previous_command}
YOUR COMMAND:
"""
PROMPT = Prompt(
PROMPT = PromptTemplate(
input_variables=["browser_content", "url", "previous_command", "objective"],
template=_PROMPT_TEMPLATE,
)

View File

@ -1,5 +1,5 @@
# flake8: noqa
from langchain.prompts.prompt import Prompt
from langchain.prompts.prompt import PromptTemplate
EXAMPLES = [
"""Question: What is the elevation range for the area that the eastern sector of the
@ -109,4 +109,4 @@ Action 3: Finish[yes]""",
]
SUFFIX = """\n\nQuestion: {input}"""
PROMPT = Prompt.from_examples(EXAMPLES, SUFFIX, ["input"])
PROMPT = PromptTemplate.from_examples(EXAMPLES, SUFFIX, ["input"])

View File

@ -1,5 +1,5 @@
# flake8: noqa
from langchain.prompts.prompt import Prompt
from langchain.prompts.prompt import PromptTemplate
_DEFAULT_TEMPLATE = """Question: Who lived longer, Muhammad Ali or Alan Turing?
Are follow up questions needed here: Yes.
@ -38,4 +38,4 @@ Intermediate Answer: New Zealand.
So the final answer is: No
Question: {input}"""
PROMPT = Prompt(input_variables=["input"], template=_DEFAULT_TEMPLATE)
PROMPT = PromptTemplate(input_variables=["input"], template=_DEFAULT_TEMPLATE)

View File

@ -1,5 +1,5 @@
# flake8: noqa
from langchain.prompts.prompt import Prompt
from langchain.prompts.prompt import PromptTemplate
_DEFAULT_TEMPLATE = """Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.
Use the following format:
@ -14,6 +14,6 @@ Only use the following tables:
{table_info}
Question: {input}"""
PROMPT = Prompt(
PROMPT = PromptTemplate(
input_variables=["input", "table_info", "dialect"], template=_DEFAULT_TEMPLATE
)

View File

@ -1,5 +1,5 @@
# flake8: noqa
from langchain.prompts import Prompt
from langchain.prompts import PromptTemplate
prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
@ -7,4 +7,6 @@ prompt_template = """Use the following pieces of context to answer the question
Question: {question}
Helpful Answer:"""
prompt = Prompt(template=prompt_template, input_variables=["context", "question"])
prompt = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)

View File

@ -3,18 +3,21 @@ from typing import List
from langchain.chains.llm import LLMChain
from langchain.llms.base import LLM
from langchain.prompts.dynamic import DynamicPrompt
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
TEST_GEN_TEMPLATE_SUFFIX = "Add another example."
def generate_example(examples: List[str], llm: LLM) -> str:
def generate_example(
examples: List[dict], llm: LLM, prompt_template: PromptTemplate
) -> str:
"""Return another example given a list of examples for a prompt."""
prompt = DynamicPrompt(examples=examples, suffix=TEST_GEN_TEMPLATE_SUFFIX)
prompt = FewShotPromptTemplate(
examples=examples,
suffix=TEST_GEN_TEMPLATE_SUFFIX,
input_variables=[],
example_prompt=prompt_template,
)
chain = LLMChain(llm=llm, prompt=prompt)
return chain.predict()
def generate_example_from_dynamic_prompt(prompt: DynamicPrompt, llm: LLM) -> str:
"""Return another example given a DynamicPrompt object."""
return generate_example(prompt.examples, llm)

View File

@ -5,7 +5,7 @@ from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.input import get_color_mapping, print_text
from langchain.llms.base import LLM
from langchain.prompts.prompt import Prompt
from langchain.prompts.prompt import PromptTemplate
class ModelLaboratory:
@ -44,7 +44,7 @@ class ModelLaboratory:
@classmethod
def from_llms(
cls, llms: List[LLM], prompt: Optional[Prompt] = None
cls, llms: List[LLM], prompt: Optional[PromptTemplate] = None
) -> "ModelLaboratory":
"""Initialize with LLMs to experiment with and optional prompt.
@ -54,7 +54,7 @@ class ModelLaboratory:
If a prompt was provided, it should only have one input variable.
"""
if prompt is None:
prompt = Prompt(input_variables=["_input"], template="{_input}")
prompt = PromptTemplate(input_variables=["_input"], template="{_input}")
chains = [LLMChain(llm=llm, prompt=prompt) for llm in llms]
names = [str(llm) for llm in llms]
return cls(chains, names=names)

View File

@ -1,6 +1,12 @@
"""Prompt template classes."""
from langchain.prompts.base import BasePrompt
from langchain.prompts.dynamic import DynamicPrompt
from langchain.prompts.prompt import Prompt
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.loading import load_prompt
from langchain.prompts.prompt import PromptTemplate
__all__ = ["BasePrompt", "Prompt", "DynamicPrompt"]
__all__ = [
"BasePromptTemplate",
"load_prompt",
"PromptTemplate",
"FewShotPromptTemplate",
]

View File

@ -9,7 +9,25 @@ DEFAULT_FORMATTER_MAPPING = {
}
class BasePrompt(ABC):
def check_valid_template(
template: str, template_format: str, input_variables: List[str]
) -> None:
"""Check that template string is valid."""
if template_format not in DEFAULT_FORMATTER_MAPPING:
valid_formats = list(DEFAULT_FORMATTER_MAPPING)
raise ValueError(
f"Invalid template format. Got `{template_format}`;"
f" should be one of {valid_formats}"
)
dummy_inputs = {input_variable: "foo" for input_variable in input_variables}
try:
formatter_func = DEFAULT_FORMATTER_MAPPING[template_format]
formatter_func(template, **dummy_inputs)
except KeyError:
raise ValueError("Invalid prompt schema.")
class BasePromptTemplate(ABC):
"""Base prompt should expose the format method, returning a prompt."""
input_variables: List[str]

View File

@ -1,112 +0,0 @@
"""Dynamic prompt schema definition."""
import re
from typing import Any, Callable, Dict, List
from pydantic import BaseModel, Extra, root_validator
from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING, BasePrompt
class DynamicPrompt(BaseModel, BasePrompt):
r"""Schema to represent a dynamic prompt for an LLM.
Example:
.. code-block:: python
from langchain import DynamicPrompt
dynamic_prompt = DynamicPrompt(
examples=["Say hi. Hi", "Say ho. Ho"],
example_separator="\n\n",
prefix="",
suffix="\n\nSay {foo}"
input_variables=["foo"],
max_length=200,
get_text_length=word_count
)
"""
examples: List[str]
"""A list of the examples that the prompt template expects."""
example_separator: str = "\n\n"
"""Example separator, e.g. \n\n, for the dynamic prompt creation."""
input_variables: List[str] = []
"""A list of the names of the variables the prompt template expects."""
prefix: str = ""
"""Prefix for the prompt."""
suffix: str = ""
"""Suffix for the prompt."""
template_format: str = "f-string"
"""The format of the prompt template. Options are: 'f-string'."""
get_text_length: Callable[[str], int] = lambda x: len(re.split("\n| ", x))
"""Function to measure prompt length. Defaults to word count."""
max_length: int = 2048
"""Max length for the prompt, beyond which examples are cut."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def template(self, example_list: List[str], **kwargs: Any) -> str:
"""Return template given example list."""
template = self.example_separator.join(
[self.prefix, *example_list, self.suffix]
)
return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs)
def format(self, **kwargs: Any) -> str:
"""Dynamically format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Example:
.. code-block:: python
prompt.format(variable1="foo")
"""
curr_examples = self.examples
template = self.template(curr_examples, **kwargs)
while self.get_text_length(template) > self.max_length and curr_examples:
curr_examples = curr_examples[:-1]
template = self.template(curr_examples, **kwargs)
return template
@root_validator()
def template_is_valid(cls, values: Dict) -> Dict:
"""Check that prefix, suffix and input variables are consistent."""
input_variables = values["input_variables"]
prefix = values["prefix"]
suffix = values["suffix"]
template_format = values["template_format"]
if template_format not in DEFAULT_FORMATTER_MAPPING:
valid_formats = list(DEFAULT_FORMATTER_MAPPING)
raise ValueError(
f"Invalid template format. Got `{template_format}`;"
f" should be one of {valid_formats}"
)
try:
result = values["get_text_length"]("foo")
assert isinstance(result, int)
except AssertionError:
raise ValueError(
"Invalid text length callable, must take string & return int;"
)
dummy_inputs = {input_variable: "foo" for input_variable in input_variables}
try:
formatter_func = DEFAULT_FORMATTER_MAPPING[template_format]
formatter_func(prefix + suffix, **dummy_inputs)
except KeyError:
raise ValueError("Invalid prompt schema.")
return values

View File

@ -0,0 +1,7 @@
"""Logic for selecting examples to include in prompts."""
from langchain.prompts.example_selector.length_based import LengthBasedExampleSelector
from langchain.prompts.example_selector.semantic_similarity import (
SemanticSimilarityExampleSelector,
)
__all__ = ["LengthBasedExampleSelector", "SemanticSimilarityExampleSelector"]

View File

@ -0,0 +1,11 @@
"""Interface for selecting examples to include in prompts."""
from abc import ABC, abstractmethod
from typing import Dict, List
class BaseExampleSelector(ABC):
"""Interface for selecting examples to include in prompts."""
@abstractmethod
def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
"""Select which examples to use based on the inputs."""

View File

@ -0,0 +1,54 @@
"""Select examples based on length."""
import re
from typing import Callable, Dict, List
from pydantic import BaseModel, validator
from langchain.prompts.example_selector.base import BaseExampleSelector
from langchain.prompts.prompt import PromptTemplate
class LengthBasedExampleSelector(BaseExampleSelector, BaseModel):
"""Select examples based on length."""
examples: List[dict]
"""A list of the examples that the prompt template expects."""
example_prompt: PromptTemplate
"""Prompt template used to format the examples."""
get_text_length: Callable[[str], int] = lambda x: len(re.split("\n| ", x))
"""Function to measure prompt length. Defaults to word count."""
max_length: int = 2048
"""Max length for the prompt, beyond which examples are cut."""
example_text_lengths: List[int] = [] #: :meta private:
@validator("example_text_lengths", always=True)
def calculate_example_text_lengths(cls, v: List[int], values: Dict) -> List[int]:
"""Calculate text lengths if they don't exist."""
# Check if text lengths were passed in
if v:
return v
# If they were not, calculate them
example_prompt = values["example_prompt"]
get_text_length = values["get_text_length"]
string_examples = [example_prompt.format(**eg) for eg in values["examples"]]
return [get_text_length(eg) for eg in string_examples]
def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
"""Select which examples to use based on the input lengths."""
inputs = " ".join(input_variables.values())
remaining_length = self.max_length - self.get_text_length(inputs)
i = 0
examples = []
while remaining_length > 0 and i < len(self.examples):
new_length = remaining_length - self.example_text_lengths[i]
if i < 0:
break
else:
examples.append(self.examples[i])
remaining_length = new_length
i += 1
return examples

View File

@ -0,0 +1,75 @@
"""Example selector that selects examples based on SemanticSimilarity."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra
from langchain.embeddings.base import Embeddings
from langchain.prompts.example_selector.base import BaseExampleSelector
from langchain.vectorstores.base import VectorStore
class SemanticSimilarityExampleSelector(BaseExampleSelector, BaseModel):
"""Example selector that selects examples based on SemanticSimilarity."""
vectorstore: VectorStore
"""VectorStore than contains information about examples."""
k: int = 4
"""Number of examples to select."""
example_keys: Optional[List[str]] = None
"""Optional keys to filter examples to."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
"""Select which examples to use based on semantic similarity."""
# Get the docs with the highest similarity.
query = " ".join(input_variables.values())
example_docs = self.vectorstore.similarity_search(query, k=self.k)
# Get the examples from the metadata.
# This assumes that examples are stored in metadata.
examples = [dict(e.metadata) for e in example_docs]
# If example keys are provided, filter examples to those keys.
if self.example_keys:
examples = [{k: eg[k] for k in self.example_keys} for eg in examples]
return examples
@classmethod
def from_examples(
cls,
examples: List[dict],
embeddings: Embeddings,
vectorstore_cls: VectorStore,
k: int = 4,
**vectorstore_cls_kwargs: Any,
) -> "SemanticSimilarityExampleSelector":
"""Create k-shot example selector using example list and embeddings.
Reshuffles examples dynamically based on query similarity.
Args:
examples: List of examples to use in the prompt.
suffix: String to go after the list of examples. Should generally
set up the user's input.
input_variables: A list of variable names the final prompt template
will expect.
embeddings: An iniialized embedding API interface, e.g. OpenAIEmbeddings().
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
example_separator: The seperator to use in between examples. Defaults
to two new line characters.
prefix: String that should go before any examples. Generally includes
examples. Default to an empty string.
k: Number of examples to select
vectorstore_cls_kwargs: optional kwargs containing url for vector store
Returns:
The ExampleSelector instantiated, backed by a vector store.
"""
string_examples = [" ".join(eg.values()) for eg in examples]
vectorstore = vectorstore_cls.from_texts(
string_examples, embeddings, metadatas=examples, **vectorstore_cls_kwargs
)
return cls(vectorstore=vectorstore, k=k)

View File

@ -0,0 +1,110 @@
"""Prompt template that contains few shot examples."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.prompts.base import (
DEFAULT_FORMATTER_MAPPING,
BasePromptTemplate,
check_valid_template,
)
from langchain.prompts.example_selector.base import BaseExampleSelector
from langchain.prompts.prompt import PromptTemplate
class FewShotPromptTemplate(BasePromptTemplate, BaseModel):
"""Prompt template that contains few shot examples."""
examples: Optional[List[dict]] = None
"""Examples to format into the prompt.
Either this or example_selector should be provided."""
example_selector: Optional[BaseExampleSelector] = None
"""ExampleSelector to choose the examples to format into the prompt.
Either this or examples should be provided."""
example_prompt: PromptTemplate
"""PromptTemplate used to format an individual example."""
suffix: str
"""A prompt template string to put after the examples."""
input_variables: List[str]
"""A list of the names of the variables the prompt template expects."""
example_separator: str = "\n\n"
"""String separator used to join the prefix, the examples, and suffix."""
prefix: str = ""
"""A prompt template string to put before the examples."""
template_format: str = "f-string"
"""The format of the prompt template. Options are: 'f-string'."""
@root_validator(pre=True)
def check_examples_and_selector(cls, values: Dict) -> Dict:
"""Check that one and only one of examples/example_selector are provided."""
examples = values.get("examples", None)
example_selector = values.get("example_selector", None)
if examples and example_selector:
raise ValueError(
"Only one of 'examples' and 'example_selector' should be provided"
)
if examples is None and example_selector is None:
raise ValueError(
"One of 'examples' and 'example_selector' should be provided"
)
return values
@root_validator()
def template_is_valid(cls, values: Dict) -> Dict:
"""Check that prefix, suffix and input variables are consistent."""
check_valid_template(
values["prefix"] + values["suffix"],
values["template_format"],
values["input_variables"],
)
return values
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
def _get_examples(self, **kwargs: Any) -> List[dict]:
if self.examples is not None:
return self.examples
elif self.example_selector is not None:
return self.example_selector.select_examples(kwargs)
else:
raise ValueError
def format(self, **kwargs: Any) -> str:
"""Format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Example:
.. code-block:: python
prompt.format(variable1="foo")
"""
# Get the examples to use.
examples = self._get_examples(**kwargs)
# Format the examples.
example_strings = [
self.example_prompt.format(**example) for example in examples
]
# Create the overall template.
pieces = [self.prefix, *example_strings, self.suffix]
template = self.example_separator.join([piece for piece in pieces if piece])
# Format the template with the input variables.
return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs)

View File

@ -0,0 +1,103 @@
"""Load prompts from disk."""
import json
from pathlib import Path
from typing import Union
import yaml
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
def load_prompt_from_config(config: dict) -> BasePromptTemplate:
"""Get the right type from the config and load it accordingly."""
prompt_type = config.pop("_type", "prompt")
if prompt_type == "prompt":
return _load_prompt(config)
elif prompt_type == "few_shot":
return _load_few_shot_prompt(config)
else:
raise ValueError
def _load_template(var_name: str, config: dict) -> dict:
"""Load template from disk if applicable."""
# Check if template_path exists in config.
if f"{var_name}_path" in config:
# If it does, make sure template variable doesn't also exist.
if var_name in config:
raise ValueError(
f"Both `{var_name}_path` and `{var_name}` cannot be provided."
)
# Pop the template path from the config.
template_path = Path(config.pop(f"{var_name}_path"))
# Load the template.
if template_path.suffix == ".txt":
with open(template_path) as f:
template = f.read()
else:
raise ValueError
# Set the template variable to the extracted variable.
config[var_name] = template
return config
def _load_examples(config: dict) -> dict:
"""Load examples if necessary."""
if isinstance(config["examples"], list):
pass
elif isinstance(config["examples"], str):
with open(config["examples"]) as f:
examples = json.load(f)
config["examples"] = examples
else:
raise ValueError
return config
def _load_few_shot_prompt(config: dict) -> FewShotPromptTemplate:
"""Load the few shot prompt from the config."""
# Load the suffix and prefix templates.
config = _load_template("suffix", config)
config = _load_template("prefix", config)
# Load the example prompt.
if "example_prompt_path" in config:
if "example_prompt" in config:
raise ValueError(
"Only one of example_prompt and example_prompt_path should "
"be specified."
)
config["example_prompt"] = load_prompt(config.pop("example_prompt_path"))
else:
config["example_prompt"] = _load_prompt(config["example_prompt"])
# Load the examples.
config = _load_examples(config)
return FewShotPromptTemplate(**config)
def _load_prompt(config: dict) -> PromptTemplate:
"""Load the prompt template from config."""
# Load the template from disk if necessary.
config = _load_template("template", config)
return PromptTemplate(**config)
def load_prompt(file: Union[str, Path]) -> BasePromptTemplate:
"""Load prompt from file."""
# Convert file to Path object.
if isinstance(file, str):
file_path = Path(file)
else:
file_path = file
# Load from either json or yaml.
if file_path.suffix == ".json":
with open(file_path) as f:
config = json.load(f)
elif file_path.suffix == ".yaml":
with open(file_path, "r") as f:
config = yaml.safe_load(f)
else:
raise ValueError
# Load the prompt from the config now.
return load_prompt_from_config(config)

View File

@ -1,166 +0,0 @@
"""Optimized prompt schema definition."""
import re
from typing import Any, Callable, Dict, List
from pydantic import BaseModel, Extra, root_validator
from langchain.embeddings.base import Embeddings
from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING
from langchain.vectorstores.base import VectorStore
class OptimizedPrompt(BaseModel):
r"""Schema to represent an optimized prompt for an LLM.
Example:
.. code-block:: python
from langchain import DynamicPrompt
vectorstore = FAISS.from_texts(examples, OpenAIEmbeddings()
optimized_prompt = OptimizedPrompt(
example_separator="\n\n",
prefix="",
suffix="\n\nSay {foo}"
input_variables=["foo"],
max_length=200,
get_text_length=word_count,
vectorstore=vectorstore)
)
"""
example_separator: str = "\n\n"
"""Example separator, e.g. \n\n, for the dynamic prompt creation."""
input_variables: List[str] = []
"""A list of the names of the variables the prompt template expects."""
prefix: str = ""
"""Prefix for the prompt."""
suffix: str = ""
"""Suffix for the prompt."""
template_format: str = "f-string"
"""The format of the prompt template. Options are: 'f-string'."""
get_text_length: Callable[[str], int] = lambda x: len(re.split("\n| ", x))
"""Function to measure prompt length. Defaults to word count."""
max_length: int = 2048
"""Max length for the prompt, beyond which examples are cut."""
vectorstore: VectorStore
"""Vectorstore to use for storing the embeddings."""
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
extra = Extra.forbid
def template(self, example_list: List[str], **kwargs: Any) -> str:
"""Return template given full example list."""
template = self.example_separator.join(
[self.prefix, *example_list, self.suffix]
)
return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs)
def format(self, k: int = 4, **kwargs: Any) -> str:
"""Optimize the examples in the prompt for the given inputs.
Args:
k: Number of examples to aim for (may be trimmed by optimizer afterwards)
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Example:
.. code-block:: python
prompt.format(variable1="foo")
"""
query = " ".join([v for k, v in kwargs.items()])
example_docs = self.vectorstore.similarity_search(query, k=k)
curr_examples = [str(e.page_content) for e in example_docs]
template = self.template(curr_examples, **kwargs)
while self.get_text_length(template) > self.max_length and curr_examples:
curr_examples = curr_examples[:-1]
template = self.template(curr_examples, **kwargs)
return template
@root_validator()
def template_is_valid(cls, values: Dict) -> Dict:
"""Check that prefix, suffix and input variables are consistent."""
input_variables = values["input_variables"]
if len(input_variables) > 1:
raise ValueError("Only one input variable allowed for optimized prompt;")
prefix = values["prefix"]
suffix = values["suffix"]
template_format = values["template_format"]
if template_format not in DEFAULT_FORMATTER_MAPPING:
valid_formats = list(DEFAULT_FORMATTER_MAPPING)
raise ValueError(
f"Invalid template format. Got `{template_format}`;"
f" should be one of {valid_formats}"
)
try:
result = values["get_text_length"]("foo")
assert isinstance(result, int)
except AssertionError:
raise ValueError(
"Invalid text length callable, must take string & return int;"
)
dummy_inputs = {input_variable: "foo" for input_variable in input_variables}
try:
formatter_func = DEFAULT_FORMATTER_MAPPING[template_format]
formatter_func(prefix + suffix, **dummy_inputs)
except KeyError:
raise ValueError("Invalid prompt schema.")
return values
@classmethod
def from_examples(
cls,
examples: List[str],
suffix: str,
input_variables: List[str],
embeddings: Embeddings,
vectorstore_cls: VectorStore,
example_separator: str = "\n\n",
prefix: str = "",
**vectorstore_cls_kwargs: Any,
) -> "OptimizedPrompt":
"""Create k-shot prompt optimizer using example list and embeddings.
Reshuffles examples for the prompt dynamically based on query similarity.
Args:
examples: List of examples to use in the prompt.
suffix: String to go after the list of examples. Should generally
set up the user's input.
input_variables: A list of variable names the final prompt template
will expect.
embeddings: An iniialized embedding API interface, e.g. OpenAIEmbeddings().
vectorstore_cls: A vector store DB interface class, e.g. FAISS.
example_separator: The seperator to use in between examples. Defaults
to two new line characters.
prefix: String that should go before any examples. Generally includes
examples. Default to an empty string.
vectorstore_cls_kwargs: optional kwargs containing url for vector store
Returns:
The OptimizedPrompt instantiated, backed by a vector store.
"""
vectorstore = vectorstore_cls.from_texts(
examples, embeddings, **vectorstore_cls_kwargs
)
return cls(
suffix=suffix,
input_variables=input_variables,
example_separator=example_separator,
prefix=prefix,
vectorstore=vectorstore,
)

View File

@ -3,17 +3,21 @@ from typing import Any, Dict, List
from pydantic import BaseModel, Extra, root_validator
from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING, BasePrompt
from langchain.prompts.base import (
DEFAULT_FORMATTER_MAPPING,
BasePromptTemplate,
check_valid_template,
)
class Prompt(BaseModel, BasePrompt):
class PromptTemplate(BaseModel, BasePromptTemplate):
"""Schema to represent a prompt for an LLM.
Example:
.. code-block:: python
from langchain import Prompt
prompt = Prompt(input_variables=["foo"], template="Say {foo}")
from langchain import PromptTemplate
prompt = PromptTemplate(input_variables=["foo"], template="Say {foo}")
"""
input_variables: List[str]
@ -50,21 +54,9 @@ class Prompt(BaseModel, BasePrompt):
@root_validator()
def template_is_valid(cls, values: Dict) -> Dict:
"""Check that template and input variables are consistent."""
input_variables = values["input_variables"]
template = values["template"]
template_format = values["template_format"]
if template_format not in DEFAULT_FORMATTER_MAPPING:
valid_formats = list(DEFAULT_FORMATTER_MAPPING)
raise ValueError(
f"Invalid template format. Got `{template_format}`;"
f" should be one of {valid_formats}"
)
dummy_inputs = {input_variable: "foo" for input_variable in input_variables}
try:
formatter_func = DEFAULT_FORMATTER_MAPPING[template_format]
formatter_func(template, **dummy_inputs)
except KeyError:
raise ValueError("Invalid prompt schema.")
check_valid_template(
values["template"], values["template_format"], values["input_variables"]
)
return values
@classmethod
@ -75,7 +67,7 @@ class Prompt(BaseModel, BasePrompt):
input_variables: List[str],
example_separator: str = "\n\n",
prefix: str = "",
) -> "Prompt":
) -> "PromptTemplate":
"""Take examples in list format with prefix and suffix to create a prompt.
Intended be used as a way to dynamically create a prompt from examples.
@ -98,7 +90,9 @@ class Prompt(BaseModel, BasePrompt):
return cls(input_variables=input_variables, template=template)
@classmethod
def from_file(cls, template_file: str, input_variables: List[str]) -> "Prompt":
def from_file(
cls, template_file: str, input_variables: List[str]
) -> "PromptTemplate":
"""Load a prompt from a file.
Args:
@ -111,3 +105,7 @@ class Prompt(BaseModel, BasePrompt):
with open(template_file, "r") as f:
template = f.read()
return cls(input_variables=input_variables, template=template)
# For backwards compatibility.
Prompt = PromptTemplate

View File

@ -1,6 +1,6 @@
"""Interface for vector stores."""
from abc import ABC, abstractmethod
from typing import Any, List
from typing import Any, List, Optional
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
@ -16,6 +16,10 @@ class VectorStore(ABC):
@classmethod
@abstractmethod
def from_texts(
cls, texts: List[str], embedding: Embeddings, **kwargs: Any
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any
) -> "VectorStore":
"""Return VectorStore initialized from texts and embeddings."""

View File

@ -1,6 +1,6 @@
"""Wrapper around Elasticsearch vector database."""
import uuid
from typing import Any, Callable, Dict, List
from typing import Any, Callable, Dict, List, Optional
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
@ -78,13 +78,19 @@ class ElasticVectorSearch(VectorStore):
embedding = self.embedding_function(query)
script_query = _default_script_query(embedding)
response = self.client.search(index=self.index_name, query=script_query)
texts = [hit["_source"]["text"] for hit in response["hits"]["hits"][:k]]
documents = [Document(page_content=text) for text in texts]
hits = [hit["_source"] for hit in response["hits"]["hits"][:k]]
documents = [
Document(page_content=hit["text"], metadata=hit["metadata"]) for hit in hits
]
return documents
@classmethod
def from_texts(
cls, texts: List[str], embedding: Embeddings, **kwargs: Any
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> "ElasticVectorSearch":
"""Construct ElasticVectorSearch wrapper from raw documents.
@ -133,11 +139,13 @@ class ElasticVectorSearch(VectorStore):
client.indices.create(index=index_name, mappings=mapping)
requests = []
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
request = {
"_op_type": "index",
"_index": index_name,
"vector": embeddings[i],
"text": text,
"metadata": metadata,
}
requests.append(request)
bulk(client, requests)

View File

@ -1,5 +1,5 @@
"""Wrapper around FAISS vector database."""
from typing import Any, Callable, List
from typing import Any, Callable, List, Optional
import numpy as np
@ -54,7 +54,11 @@ class FAISS(VectorStore):
@classmethod
def from_texts(
cls, texts: List[str], embedding: Embeddings, **kwargs: Any
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> "FAISS":
"""Construct FAISS wrapper from raw documents.
@ -84,6 +88,9 @@ class FAISS(VectorStore):
embeddings = embedding.embed_documents(texts)
index = faiss.IndexFlatL2(len(embeddings[0]))
index.add(np.array(embeddings, dtype=np.float32))
documents = [Document(page_content=text) for text in texts]
documents = []
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
documents.append(Document(page_content=text, metadata=metadata))
docstore = InMemoryDocstore({str(i): doc for i, doc in enumerate(documents)})
return cls(embedding.embed_query, index, docstore)

View File

@ -27,7 +27,7 @@ setup(
version=__version__,
packages=find_packages(),
description="Building applications with LLMs through composability",
install_requires=["pydantic", "sqlalchemy", "numpy", "requests"],
install_requires=["pydantic", "sqlalchemy", "numpy", "requests", "pyyaml"],
long_description=long_description,
license="MIT",
url="https://github.com/hwchase17/langchain",

View File

@ -9,3 +9,4 @@ mypy
flake8
flake8-docstrings
types-requests
types-PyYAML

View File

@ -0,0 +1 @@
"""Test vectorstores."""

View File

@ -0,0 +1,42 @@
"""Test ElasticSearch functionality."""
from typing import List
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch
class FakeEmbeddings(Embeddings):
"""Fake embeddings functionality for testing."""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return simple embeddings."""
return [[1.0] * 9 + [i] for i in range(len(texts))]
def embed_query(self, text: str) -> List[float]:
"""Return simple embeddings."""
return [1.0] * 9 + [0.0]
def test_elasticsearch() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = ElasticVectorSearch.from_texts(
texts, FakeEmbeddings(), elasticsearch_url="http://localhost:9200"
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_elasticsearch_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = ElasticVectorSearch.from_texts(
texts,
FakeEmbeddings(),
metadatas=metadatas,
elasticsearch_url="http://localhost:9200",
)
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]

View File

@ -37,6 +37,23 @@ def test_faiss() -> None:
assert output == [Document(page_content="foo")]
def test_faiss_with_metadatas() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), metadatas=metadatas)
expected_docstore = InMemoryDocstore(
{
"0": Document(page_content="foo", metadata={"page": 0}),
"1": Document(page_content="bar", metadata={"page": 1}),
"2": Document(page_content="baz", metadata={"page": 2}),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo", metadata={"page": 0})]
def test_faiss_search_not_found() -> None:
"""Test what happens when document is not found."""
texts = ["foo", "bar", "baz"]

View File

@ -2,14 +2,14 @@
import pytest
from langchain.chains.llm import LLMChain
from langchain.prompts.prompt import Prompt
from langchain.prompts.prompt import PromptTemplate
from tests.unit_tests.llms.fake_llm import FakeLLM
@pytest.fixture
def fake_llm_chain() -> LLMChain:
"""Fake LLM chain for testing purposes."""
prompt = Prompt(input_variables=["bar"], template="This is a {bar}:")
prompt = PromptTemplate(input_variables=["bar"], template="This is a {bar}:")
return LLMChain(prompt=prompt, llm=FakeLLM(), output_key="text1")

View File

@ -8,7 +8,7 @@ from langchain.chains.mrkl.base import (
get_action_and_input,
)
from langchain.chains.mrkl.prompt import BASE_TEMPLATE
from langchain.prompts import Prompt
from langchain.prompts import PromptTemplate
from tests.unit_tests.llms.fake_llm import FakeLLM
@ -70,5 +70,5 @@ def test_from_chains() -> None:
tools=expected_tools_prompt, tool_names=expected_tool_names
)
prompt = router_chain.llm_chain.prompt
assert isinstance(prompt, Prompt)
assert isinstance(prompt, PromptTemplate)
assert prompt.template == expected_template

View File

@ -8,7 +8,7 @@ from langchain.chains.react.base import ReActChain, ReActRouterChain
from langchain.docstore.base import Docstore
from langchain.docstore.document import Document
from langchain.llms.base import LLM
from langchain.prompts.prompt import Prompt
from langchain.prompts.prompt import PromptTemplate
_PAGE_CONTENT = """This is a page about LangChain.
@ -18,7 +18,7 @@ What isn't there to love about langchain?
Made in 2022."""
_FAKE_PROMPT = Prompt(input_variables=["input"], template="{input}")
_FAKE_PROMPT = PromptTemplate(input_variables=["input"], template="{input}")
class FakeListLLM(LLM):

View File

@ -0,0 +1 @@
"""Test prompt functionality."""

View File

@ -0,0 +1,87 @@
"""Test few shot prompt template."""
import pytest
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
EXAMPLE_PROMPT = PromptTemplate(
input_variables=["question", "answer"], template="{question}: {answer}"
)
def test_suffix_only() -> None:
"""Test prompt works with just a suffix."""
suffix = "This is a {foo} test."
input_variables = ["foo"]
prompt = FewShotPromptTemplate(
input_variables=input_variables,
suffix=suffix,
examples=[],
example_prompt=EXAMPLE_PROMPT,
)
output = prompt.format(foo="bar")
expected_output = "This is a bar test."
assert output == expected_output
def test_prompt_missing_input_variables() -> None:
"""Test error is raised when input variables are not provided."""
# Test when missing in suffix
template = "This is a {foo} test."
with pytest.raises(ValueError):
FewShotPromptTemplate(
input_variables=[],
suffix=template,
examples=[],
example_prompt=EXAMPLE_PROMPT,
)
# Test when missing in prefix
template = "This is a {foo} test."
with pytest.raises(ValueError):
FewShotPromptTemplate(
input_variables=[],
suffix="foo",
examples=[],
prefix=template,
example_prompt=EXAMPLE_PROMPT,
)
def test_prompt_extra_input_variables() -> None:
"""Test error is raised when there are too many input variables."""
template = "This is a {foo} test."
input_variables = ["foo", "bar"]
with pytest.raises(ValueError):
FewShotPromptTemplate(
input_variables=input_variables,
suffix=template,
examples=[],
example_prompt=EXAMPLE_PROMPT,
)
def test_few_shot_functionality() -> None:
"""Test that few shot works with examples."""
prefix = "This is a test about {content}."
suffix = "Now you try to talk about {new_content}."
examples = [
{"question": "foo", "answer": "bar"},
{"question": "baz", "answer": "foo"},
]
prompt = FewShotPromptTemplate(
suffix=suffix,
prefix=prefix,
input_variables=["content", "new_content"],
examples=examples,
example_prompt=EXAMPLE_PROMPT,
example_separator="\n",
)
output = prompt.format(content="animals", new_content="party")
expected_output = (
"This is a test about animals.\n"
"foo: bar\n"
"baz: foo\n"
"Now you try to talk about party."
)
assert output == expected_output

View File

@ -0,0 +1,48 @@
"""Test functionality related to dynamic prompts."""
import pytest
from langchain.prompts.example_selector.length_based import LengthBasedExampleSelector
from langchain.prompts.prompt import PromptTemplate
EXAMPLES = [
{"question": "Question: who are you?\nAnswer: foo"},
{"question": "Question: who are you?\nAnswer: foo"},
]
@pytest.fixture
def selector() -> LengthBasedExampleSelector:
"""Get length based selector to use in tests."""
prompts = PromptTemplate(input_variables=["question"], template="{question}")
selector = LengthBasedExampleSelector(
examples=EXAMPLES,
example_prompt=prompts,
max_length=25,
)
return selector
def test_dynamic_prompt_valid(selector: LengthBasedExampleSelector) -> None:
"""Test dynamic prompt can be successfully constructed from examples."""
short_question = "Short question?"
output = selector.select_examples({"question": short_question})
assert output == EXAMPLES
def test_dynamic_prompt_trims_one_example(selector: LengthBasedExampleSelector) -> None:
"""Test dynamic prompt can trim one example."""
long_question = """I am writing a really long question,
this probably is going to affect the example right?"""
output = selector.select_examples({"question": long_question})
assert output == EXAMPLES[:1]
def test_dynamic_prompt_trims_all_examples(
selector: LengthBasedExampleSelector,
) -> None:
"""Test dynamic prompt can trim all examples."""
longest_question = """This question is super super super,
super super super super super super super super super super super,
super super super super long, this will affect the example right?"""
output = selector.select_examples({"question": longest_question})
assert output == []

View File

@ -0,0 +1,134 @@
"""Test loading functionality."""
import os
from contextlib import contextmanager
from pathlib import Path
from typing import Iterator
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.loading import load_prompt
from langchain.prompts.prompt import PromptTemplate
@contextmanager
def change_directory() -> Iterator:
"""Change the working directory to the right folder."""
origin = Path().absolute()
try:
os.chdir("docs/examples/prompts")
yield
finally:
os.chdir(origin)
def test_loading_from_YAML() -> None:
"""Test loading from yaml file."""
with change_directory():
prompt = load_prompt("simple_prompt.yaml")
expected_prompt = PromptTemplate(
input_variables=["adjective", "content"],
template="Tell me a {adjective} joke about {content}.",
)
assert prompt == expected_prompt
def test_loading_from_JSON() -> None:
"""Test loading from json file."""
with change_directory():
prompt = load_prompt("simple_prompt.json")
expected_prompt = PromptTemplate(
input_variables=["adjective", "content"],
template="Tell me a {adjective} joke about {content}.",
)
assert prompt == expected_prompt
def test_loading_with_template_as_file() -> None:
"""Test loading when the template is a file."""
with change_directory():
prompt = load_prompt("simple_prompt_with_template_file.json")
expected_prompt = PromptTemplate(
input_variables=["adjective", "content"],
template="Tell me a {adjective} joke about {content}.",
)
assert prompt == expected_prompt
def test_loading_few_shot_prompt_from_yaml() -> None:
"""Test loading few shot prompt from yaml."""
with change_directory():
prompt = load_prompt("few_shot_prompt.yaml")
expected_prompt = FewShotPromptTemplate(
input_variables=["adjective"],
prefix="Write antonyms for the following words.",
example_prompt=PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
),
examples=[
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
],
suffix="Input: {adjective}\nOutput:",
)
assert prompt == expected_prompt
def test_loading_few_shot_prompt_from_json() -> None:
"""Test loading few shot prompt from json."""
with change_directory():
prompt = load_prompt("few_shot_prompt.json")
expected_prompt = FewShotPromptTemplate(
input_variables=["adjective"],
prefix="Write antonyms for the following words.",
example_prompt=PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
),
examples=[
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
],
suffix="Input: {adjective}\nOutput:",
)
assert prompt == expected_prompt
def test_loading_few_shot_prompt_when_examples_in_config() -> None:
"""Test loading few shot prompt when the examples are in the config."""
with change_directory():
prompt = load_prompt("few_shot_prompt_examples_in.json")
expected_prompt = FewShotPromptTemplate(
input_variables=["adjective"],
prefix="Write antonyms for the following words.",
example_prompt=PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
),
examples=[
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
],
suffix="Input: {adjective}\nOutput:",
)
assert prompt == expected_prompt
def test_loading_few_shot_prompt_example_prompt() -> None:
"""Test loading few shot when the example prompt is in its own file."""
with change_directory():
prompt = load_prompt("few_shot_prompt_example_prompt.json")
expected_prompt = FewShotPromptTemplate(
input_variables=["adjective"],
prefix="Write antonyms for the following words.",
example_prompt=PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
),
examples=[
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
],
suffix="Input: {adjective}\nOutput:",
)
assert prompt == expected_prompt

View File

@ -1,14 +1,14 @@
"""Test functionality related to prompts."""
import pytest
from langchain.prompts.prompt import Prompt
from langchain.prompts.prompt import PromptTemplate
def test_prompt_valid() -> None:
"""Test prompts can be constructed."""
template = "This is a {foo} test."
input_variables = ["foo"]
prompt = Prompt(input_variables=input_variables, template=template)
prompt = PromptTemplate(input_variables=input_variables, template=template)
assert prompt.template == template
assert prompt.input_variables == input_variables
@ -18,7 +18,7 @@ def test_prompt_missing_input_variables() -> None:
template = "This is a {foo} test."
input_variables: list = []
with pytest.raises(ValueError):
Prompt(input_variables=input_variables, template=template)
PromptTemplate(input_variables=input_variables, template=template)
def test_prompt_extra_input_variables() -> None:
@ -26,7 +26,7 @@ def test_prompt_extra_input_variables() -> None:
template = "This is a {foo} test."
input_variables = ["foo", "bar"]
with pytest.raises(ValueError):
Prompt(input_variables=input_variables, template=template)
PromptTemplate(input_variables=input_variables, template=template)
def test_prompt_wrong_input_variables() -> None:
@ -34,7 +34,7 @@ def test_prompt_wrong_input_variables() -> None:
template = "This is a {foo} test."
input_variables = ["bar"]
with pytest.raises(ValueError):
Prompt(input_variables=input_variables, template=template)
PromptTemplate(input_variables=input_variables, template=template)
def test_prompt_from_examples_valid() -> None:
@ -57,14 +57,16 @@ Answer:"""
"""Question: who are you?\nAnswer: foo""",
"""Question: what are you?\nAnswer: bar""",
]
prompt_from_examples = Prompt.from_examples(
prompt_from_examples = PromptTemplate.from_examples(
examples,
suffix,
input_variables,
example_separator=example_separator,
prefix=prefix,
)
prompt_from_template = Prompt(input_variables=input_variables, template=template)
prompt_from_template = PromptTemplate(
input_variables=input_variables, template=template
)
assert prompt_from_examples.template == prompt_from_template.template
assert prompt_from_examples.input_variables == prompt_from_template.input_variables
@ -74,7 +76,7 @@ def test_prompt_invalid_template_format() -> None:
template = "This is a {foo} test."
input_variables = ["foo"]
with pytest.raises(ValueError):
Prompt(
PromptTemplate(
input_variables=input_variables, template=template, template_format="bar"
)
@ -83,5 +85,5 @@ def test_prompt_from_file() -> None:
"""Test prompt can be successfully constructed from a file."""
template_file = "tests/unit_tests/data/prompt_file.txt"
input_variables = ["question"]
prompt = Prompt.from_file(template_file, input_variables)
prompt = PromptTemplate.from_file(template_file, input_variables)
assert prompt.template == "Question: {question}\nAnswer:"

View File

@ -1,111 +0,0 @@
"""Test functionality related to dynamic prompts."""
from langchain.prompts.dynamic import DynamicPrompt
from langchain.prompts.prompt import Prompt
# FULL TEMPLATES
LONGER_TEMPLATE = """Test Prompt:
Question: who are you?
Answer: foo
Question: what are you?
Answer: bar
Question: {question}
Answer:"""
SHORTER_TEMPLATE = """Test Prompt:
Question: who are you?
Answer: foo
Question: {question}
Answer:"""
SHORTEST_TEMPLATE = """Test Prompt:
Question: {question}
Answer:"""
# DYNAMIC PROMPT COMPONENTS
PREFIX = """Test Prompt:"""
SUFFIX = """Question: {question}\nAnswer:"""
EXAMPLES = [
"""Question: who are you?\nAnswer: foo""",
"""Question: what are you?\nAnswer: bar""",
]
# INPUTS
TEST_LONG_QUESTION = """I am writing a really long question,
this probably is going to affect the example right?"""
TEST_LONGEST_QUESTION = """This question is super super super,
super super super super super super super super super super super,
super super super super long, this will affect the example right?"""
TEST_SHORT_QUESTION = "Short question?"
def test_dynamic_prompt_valid() -> None:
"""Test dynamic prompt can be successfully constructed from examples."""
input_variables = ["question"]
example_separator = "\n\n"
dynamic_prompt_cls = DynamicPrompt(
examples=EXAMPLES,
suffix=SUFFIX,
input_variables=input_variables,
example_separator=example_separator,
prefix=PREFIX,
)
prompt_cls = Prompt(input_variables=input_variables, template=LONGER_TEMPLATE)
dynamic_prompt_template = dynamic_prompt_cls.format(question="foo?")
prompt_template = prompt_cls.format(question="foo?")
assert dynamic_prompt_template == prompt_template
assert dynamic_prompt_cls.input_variables == prompt_cls.input_variables
def test_dynamic_prompt_trims_one_example() -> None:
"""Test dynamic prompt can trim one example."""
input_variables = ["question"]
example_separator = "\n\n"
dynamic_prompt_cls = DynamicPrompt(
examples=EXAMPLES,
suffix=SUFFIX,
input_variables=input_variables,
example_separator=example_separator,
prefix=PREFIX,
max_length=30,
)
dynamic_prompt = dynamic_prompt_cls.format(question=TEST_LONG_QUESTION)
shorter_prompt = SHORTER_TEMPLATE.format(question=TEST_LONG_QUESTION)
assert dynamic_prompt == shorter_prompt
def test_dynamic_prompt_trims_no_examples() -> None:
"""Test dynamic prompt can trim no examples."""
input_variables = ["question"]
example_separator = "\n\n"
dynamic_prompt_cls = DynamicPrompt(
examples=EXAMPLES,
suffix=SUFFIX,
input_variables=input_variables,
example_separator=example_separator,
prefix=PREFIX,
max_length=30,
)
dynamic_prompt = dynamic_prompt_cls.format(question=TEST_SHORT_QUESTION)
full_prompt = LONGER_TEMPLATE.format(question=TEST_SHORT_QUESTION)
assert dynamic_prompt == full_prompt
def test_dynamic_prompt_trims_all_examples() -> None:
"""Test dynamic prompt can trim all examples."""
input_variables = ["question"]
example_separator = "\n\n"
dynamic_prompt_cls = DynamicPrompt(
examples=EXAMPLES,
suffix=SUFFIX,
input_variables=input_variables,
example_separator=example_separator,
prefix=PREFIX,
max_length=30,
)
dynamic_prompt = dynamic_prompt_cls.format(question=TEST_LONGEST_QUESTION)
full_prompt = SHORTEST_TEMPLATE.format(question=TEST_LONGEST_QUESTION)
assert dynamic_prompt == full_prompt