forked from Archives/langchain
Feature/add acreom loader (#5780)
adding new loader for [acreom](https://acreom.com) vaults. It's based on the Obsidian loader with some additional text processing for acreom specific markdown elements. @eyurtsev please take a look! --------- Co-authored-by: rlm <pexpresss31@gmail.com>
This commit is contained in:
parent
ae76e473e1
commit
1913320cbe
75
docs/modules/indexes/document_loaders/examples/acreom.ipynb
Normal file
75
docs/modules/indexes/document_loaders/examples/acreom.ipynb
Normal file
@ -0,0 +1,75 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "e310c8dc-acd0-48d2-801c-f37ce99acd2d",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# acreom"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "04a2c95d-4114-431e-904a-32d79005c28b",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"[acreom](https://acreom.com) is a dev-first knowledge base with tasks running on local markdown files.\n",
|
||||||
|
"\n",
|
||||||
|
"Below is an example on how to load a local acreom vault into Langchain. As the local vault in acreom is a folder of plain text .md files, the loader requires the path to the directory. \n",
|
||||||
|
"\n",
|
||||||
|
"Vault files may contain some metadata which is stored as a YAML header. These values will be added to the document’s metadata if `collect_metadata` is set to true. "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "0169bee5-aa7a-4ec7-b7e7-b3bb2e58f3bb",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.document_loaders import AcreomLoader"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "c1b49ab3-616b-4149-bef5-7559d65d3d2b",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"loader = AcreomLoader('<path-to-acreom-vault>', collect_metadata=False)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "3127a018-9c1c-4886-8321-f5666d970a95",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"docs = loader.load()"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.10.10"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
@ -1,5 +1,6 @@
|
|||||||
"""All different types of document loaders."""
|
"""All different types of document loaders."""
|
||||||
|
|
||||||
|
from langchain.document_loaders.acreom import AcreomLoader
|
||||||
from langchain.document_loaders.airbyte_json import AirbyteJSONLoader
|
from langchain.document_loaders.airbyte_json import AirbyteJSONLoader
|
||||||
from langchain.document_loaders.airtable import AirtableLoader
|
from langchain.document_loaders.airtable import AirtableLoader
|
||||||
from langchain.document_loaders.apify_dataset import ApifyDatasetLoader
|
from langchain.document_loaders.apify_dataset import ApifyDatasetLoader
|
||||||
@ -136,6 +137,7 @@ PagedPDFSplitter = PyPDFLoader
|
|||||||
TelegramChatLoader = TelegramChatFileLoader
|
TelegramChatLoader = TelegramChatFileLoader
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
|
"AcreomLoader",
|
||||||
"AZLyricsLoader",
|
"AZLyricsLoader",
|
||||||
"AirbyteJSONLoader",
|
"AirbyteJSONLoader",
|
||||||
"AirtableLoader",
|
"AirtableLoader",
|
||||||
|
73
langchain/document_loaders/acreom.py
Normal file
73
langchain/document_loaders/acreom.py
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
"""Loader that loads acreom vault from a directory."""
|
||||||
|
import re
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Iterator, List
|
||||||
|
|
||||||
|
from langchain.docstore.document import Document
|
||||||
|
from langchain.document_loaders.base import BaseLoader
|
||||||
|
|
||||||
|
|
||||||
|
class AcreomLoader(BaseLoader):
|
||||||
|
FRONT_MATTER_REGEX = re.compile(r"^---\n(.*?)\n---\n", re.MULTILINE | re.DOTALL)
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, path: str, encoding: str = "UTF-8", collect_metadata: bool = True
|
||||||
|
):
|
||||||
|
"""Initialize with path."""
|
||||||
|
self.file_path = path
|
||||||
|
self.encoding = encoding
|
||||||
|
self.collect_metadata = collect_metadata
|
||||||
|
|
||||||
|
def _parse_front_matter(self, content: str) -> dict:
|
||||||
|
"""Parse front matter metadata from the content and return it as a dict."""
|
||||||
|
if not self.collect_metadata:
|
||||||
|
return {}
|
||||||
|
match = self.FRONT_MATTER_REGEX.search(content)
|
||||||
|
front_matter = {}
|
||||||
|
if match:
|
||||||
|
lines = match.group(1).split("\n")
|
||||||
|
for line in lines:
|
||||||
|
if ":" in line:
|
||||||
|
key, value = line.split(":", 1)
|
||||||
|
front_matter[key.strip()] = value.strip()
|
||||||
|
else:
|
||||||
|
# Skip lines without a colon
|
||||||
|
continue
|
||||||
|
return front_matter
|
||||||
|
|
||||||
|
def _remove_front_matter(self, content: str) -> str:
|
||||||
|
"""Remove front matter metadata from the given content."""
|
||||||
|
if not self.collect_metadata:
|
||||||
|
return content
|
||||||
|
return self.FRONT_MATTER_REGEX.sub("", content)
|
||||||
|
|
||||||
|
def _process_acreom_content(self, content: str) -> str:
|
||||||
|
# remove acreom specific elements from content that
|
||||||
|
# do not contribute to the context of current document
|
||||||
|
content = re.sub("\s*-\s\[\s\]\s.*|\s*\[\s\]\s.*", "", content) # rm tasks
|
||||||
|
content = re.sub("#", "", content) # rm hashtags
|
||||||
|
content = re.sub("\[\[.*?\]\]", "", content) # rm doclinks
|
||||||
|
return content
|
||||||
|
|
||||||
|
def lazy_load(self) -> Iterator[Document]:
|
||||||
|
ps = list(Path(self.file_path).glob("**/*.md"))
|
||||||
|
|
||||||
|
for p in ps:
|
||||||
|
with open(p, encoding=self.encoding) as f:
|
||||||
|
text = f.read()
|
||||||
|
|
||||||
|
front_matter = self._parse_front_matter(text)
|
||||||
|
text = self._remove_front_matter(text)
|
||||||
|
|
||||||
|
text = self._process_acreom_content(text)
|
||||||
|
|
||||||
|
metadata = {
|
||||||
|
"source": str(p.name),
|
||||||
|
"path": str(p),
|
||||||
|
**front_matter,
|
||||||
|
}
|
||||||
|
|
||||||
|
yield Document(page_content=text, metadata=metadata)
|
||||||
|
|
||||||
|
def load(self) -> List[Document]:
|
||||||
|
return list(self.lazy_load())
|
Loading…
Reference in New Issue
Block a user