forked from Archives/langchain
Add Support for OpenSearch Vector database (#1191)
### Description This PR adds a wrapper which adds support for the OpenSearch vector database. Using opensearch-py client we are ingesting the embeddings of given text into opensearch cluster using Bulk API. We can perform the `similarity_search` on the index using the 3 popular searching methods of OpenSearch k-NN plugin: - `Approximate k-NN Search` use approximate nearest neighbor (ANN) algorithms from the [nmslib](https://github.com/nmslib/nmslib), [faiss](https://github.com/facebookresearch/faiss), and [Lucene](https://lucene.apache.org/) libraries to power k-NN search. - `Script Scoring` extends OpenSearch’s script scoring functionality to execute a brute force, exact k-NN search. - `Painless Scripting` adds the distance functions as painless extensions that can be used in more complex combinations. Also, supports brute force, exact k-NN search like Script Scoring. ### Issues Resolved https://github.com/hwchase17/langchain/issues/1054 --------- Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
This commit is contained in:
parent
c5015d77e2
commit
0118706fd6
21
docs/ecosystem/opensearch.md
Normal file
21
docs/ecosystem/opensearch.md
Normal file
@ -0,0 +1,21 @@
|
||||
# OpenSearch
|
||||
|
||||
This page covers how to use the OpenSearch ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific OpenSearch wrappers.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python package with `pip install opensearch-py`
|
||||
## Wrappers
|
||||
|
||||
### VectorStore
|
||||
|
||||
There exists a wrapper around OpenSearch vector databases, allowing you to use it as a vectorstore
|
||||
for semantic search using approximate vector search powered by lucene, nmslib and faiss engines
|
||||
or using painless scripting and script scoring functions for bruteforce vector search.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain.vectorstores import OpenSearchVectorSearch
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the OpenSearch wrapper, see [this notebook](../modules/indexes/vectorstore_examples/opensearch.ipynb)
|
@ -732,4 +732,4 @@
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
}
|
@ -215,4 +215,4 @@
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
}
|
220
docs/modules/indexes/vectorstore_examples/opensearch.ipynb
Normal file
220
docs/modules/indexes/vectorstore_examples/opensearch.ipynb
Normal file
@ -0,0 +1,220 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "683953b3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# OpenSearch\n",
|
||||
"\n",
|
||||
"This notebook shows how to use functionality related to the OpenSearch database.\n",
|
||||
"\n",
|
||||
"To run, you should have the opensearch instance up and running: [here](https://opensearch.org/docs/latest/install-and-configure/install-opensearch/index/)\n",
|
||||
"`similarity_search` by default performs the Approximate k-NN Search which uses one of the several algorithms like lucene, nmslib, faiss recommended for\n",
|
||||
"large datasets. To perform brute force search we have other search methods known as Script Scoring and Painless Scripting.\n",
|
||||
"Check [this](https://opensearch.org/docs/latest/search-plugins/knn/index/) for more details."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "aac9563e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import OpenSearchVectorSearch\n",
|
||||
"from langchain.document_loaders import TextLoader"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "a3c3999a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"loader = TextLoader('../../state_of_the_union.txt')\n",
|
||||
"documents = loader.load()\n",
|
||||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"docs = text_splitter.split_documents(documents)\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docsearch = OpenSearchVectorSearch.from_texts(texts, embeddings, opensearch_url=\"http://localhost:9200\")\n",
|
||||
"\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs = docsearch.similarity_search(query)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(docs[0].page_content)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"#### similarity_search using Approximate k-NN Search with Custom Parameters"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docsearch = OpenSearchVectorSearch.from_texts(texts, embeddings, opensearch_url=\"http://localhost:9200\", engine=\"faiss\", space_type=\"innerproduct\", ef_construction=256, m=48)\n",
|
||||
"\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs = docsearch.similarity_search(query)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(docs[0].page_content)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"#### similarity_search using Script Scoring with Custom Parameters"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docsearch = OpenSearchVectorSearch.from_texts(texts, embeddings, opensearch_url=\"http://localhost:9200\", is_appx_search=False)\n",
|
||||
"\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs = docsearch.similarity_search(\"What did the president say about Ketanji Brown Jackson\", k=1, search_type=\"script_scoring\")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(docs[0].page_content)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"#### similarity_search using Painless Scripting with Custom Parameters"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docsearch = OpenSearchVectorSearch.from_texts(texts, embeddings, opensearch_url=\"http://localhost:9200\", is_appx_search=False)\n",
|
||||
"filter = {\"bool\": {\"filter\": {\"term\": {\"text\": \"smuggling\"}}}}\n",
|
||||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||||
"docs = docsearch.similarity_search(\"What did the president say about Ketanji Brown Jackson\", search_type=\"painless_scripting\", space_type=\"cosineSimilarity\", pre_filter=filter)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(docs[0].page_content)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -47,5 +47,9 @@ The following use cases require specific installs and api keys:
|
||||
- Install requirements with `pip install faiss` for Python 3.7 and `pip install faiss-cpu` for Python 3.10+.
|
||||
- _Manifest_:
|
||||
- Install requirements with `pip install manifest-ml` (Note: this is only available in Python 3.8+ currently).
|
||||
- _OpenSearch_:
|
||||
- Install requirements with `pip install opensearch-py`
|
||||
- If you want to set up OpenSearch on your local, [here](https://opensearch.org/docs/latest/)
|
||||
|
||||
|
||||
If you are using the `NLTKTextSplitter` or the `SpacyTextSplitter`, you will also need to install the appropriate models. For example, if you want to use the `SpacyTextSplitter`, you will need to install the `en_core_web_sm` model with `python -m spacy download en_core_web_sm`. Similarly, if you want to use the `NLTKTextSplitter`, you will need to install the `punkt` model with `python -m nltk.downloader punkt`.
|
||||
|
@ -4,6 +4,7 @@ from langchain.vectorstores.chroma import Chroma
|
||||
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch
|
||||
from langchain.vectorstores.faiss import FAISS
|
||||
from langchain.vectorstores.milvus import Milvus
|
||||
from langchain.vectorstores.opensearch_vector_search import OpenSearchVectorSearch
|
||||
from langchain.vectorstores.pinecone import Pinecone
|
||||
from langchain.vectorstores.qdrant import Qdrant
|
||||
from langchain.vectorstores.weaviate import Weaviate
|
||||
@ -17,4 +18,5 @@ __all__ = [
|
||||
"Qdrant",
|
||||
"Milvus",
|
||||
"Chroma",
|
||||
"OpenSearchVectorSearch",
|
||||
]
|
||||
|
382
langchain/vectorstores/opensearch_vector_search.py
Normal file
382
langchain/vectorstores/opensearch_vector_search.py
Normal file
@ -0,0 +1,382 @@
|
||||
"""Wrapper around OpenSearch vector database."""
|
||||
from __future__ import annotations
|
||||
|
||||
import uuid
|
||||
from typing import Any, Dict, Iterable, List, Optional
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
from langchain.vectorstores.base import VectorStore
|
||||
|
||||
IMPORT_OPENSEARCH_PY_ERROR = (
|
||||
"Could not import OpenSearch. Please install it with `pip install opensearch-py`."
|
||||
)
|
||||
SCRIPT_SCORING_SEARCH = "script_scoring"
|
||||
PAINLESS_SCRIPTING_SEARCH = "painless_scripting"
|
||||
MATCH_ALL_QUERY = {"match_all": {}} # type: Dict
|
||||
|
||||
|
||||
def _import_opensearch() -> Any:
|
||||
"""Import OpenSearch if available, otherwise raise error."""
|
||||
try:
|
||||
from opensearchpy import OpenSearch
|
||||
except ImportError:
|
||||
raise ValueError(IMPORT_OPENSEARCH_PY_ERROR)
|
||||
return OpenSearch
|
||||
|
||||
|
||||
def _import_bulk() -> Any:
|
||||
"""Import bulk if available, otherwise raise error."""
|
||||
try:
|
||||
from opensearchpy.helpers import bulk
|
||||
except ImportError:
|
||||
raise ValueError(IMPORT_OPENSEARCH_PY_ERROR)
|
||||
return bulk
|
||||
|
||||
|
||||
def _get_opensearch_client(opensearch_url: str) -> Any:
|
||||
"""Get OpenSearch client from the opensearch_url, otherwise raise error."""
|
||||
try:
|
||||
opensearch = _import_opensearch()
|
||||
client = opensearch(opensearch_url)
|
||||
except ValueError as e:
|
||||
raise ValueError(
|
||||
f"OpenSearch client string provided is not in proper format. "
|
||||
f"Got error: {e} "
|
||||
)
|
||||
return client
|
||||
|
||||
|
||||
def _validate_embeddings_and_bulk_size(embeddings_length: int, bulk_size: int) -> None:
|
||||
"""Validate Embeddings Length and Bulk Size."""
|
||||
if embeddings_length == 0:
|
||||
raise RuntimeError("Embeddings size is zero")
|
||||
if bulk_size < embeddings_length:
|
||||
raise RuntimeError(
|
||||
f"The embeddings count, {embeddings_length} is more than the "
|
||||
f"[bulk_size], {bulk_size}. Increase the value of [bulk_size]."
|
||||
)
|
||||
|
||||
|
||||
def _bulk_ingest_embeddings(
|
||||
client: Any,
|
||||
index_name: str,
|
||||
embeddings: List[List[float]],
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
) -> List[str]:
|
||||
"""Bulk Ingest Embeddings into given index."""
|
||||
bulk = _import_bulk()
|
||||
requests = []
|
||||
ids = []
|
||||
for i, text in enumerate(texts):
|
||||
metadata = metadatas[i] if metadatas else {}
|
||||
_id = str(uuid.uuid4())
|
||||
request = {
|
||||
"_op_type": "index",
|
||||
"_index": index_name,
|
||||
"vector_field": embeddings[i],
|
||||
"text": text,
|
||||
"metadata": metadata,
|
||||
"_id": _id,
|
||||
}
|
||||
requests.append(request)
|
||||
ids.append(_id)
|
||||
bulk(client, requests)
|
||||
client.indices.refresh(index=index_name)
|
||||
return ids
|
||||
|
||||
|
||||
def _default_scripting_text_mapping(dim: int) -> Dict:
|
||||
"""For Painless Scripting or Script Scoring,the default mapping to create index."""
|
||||
return {
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"vector_field": {"type": "knn_vector", "dimension": dim},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def _default_text_mapping(
|
||||
dim: int,
|
||||
engine: str = "nmslib",
|
||||
space_type: str = "l2",
|
||||
ef_search: int = 512,
|
||||
ef_construction: int = 512,
|
||||
m: int = 16,
|
||||
) -> Dict:
|
||||
"""For Approximate k-NN Search, this is the default mapping to create index."""
|
||||
return {
|
||||
"settings": {"index": {"knn": True, "knn.algo_param.ef_search": ef_search}},
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"vector_field": {
|
||||
"type": "knn_vector",
|
||||
"dimension": dim,
|
||||
"method": {
|
||||
"name": "hnsw",
|
||||
"space_type": space_type,
|
||||
"engine": engine,
|
||||
"parameters": {"ef_construction": ef_construction, "m": m},
|
||||
},
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def _default_approximate_search_query(
|
||||
query_vector: List[float], size: int = 4, k: int = 4
|
||||
) -> Dict:
|
||||
"""For Approximate k-NN Search, this is the default query."""
|
||||
return {
|
||||
"size": size,
|
||||
"query": {"knn": {"vector_field": {"vector": query_vector, "k": k}}},
|
||||
}
|
||||
|
||||
|
||||
def _default_script_query(
|
||||
query_vector: List[float],
|
||||
space_type: str = "l2",
|
||||
pre_filter: Dict = MATCH_ALL_QUERY,
|
||||
) -> Dict:
|
||||
"""For Script Scoring Search, this is the default query."""
|
||||
return {
|
||||
"query": {
|
||||
"script_score": {
|
||||
"query": pre_filter,
|
||||
"script": {
|
||||
"source": "knn_score",
|
||||
"lang": "knn",
|
||||
"params": {
|
||||
"field": "vector_field",
|
||||
"query_value": query_vector,
|
||||
"space_type": space_type,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def __get_painless_scripting_source(space_type: str, query_vector: List[float]) -> str:
|
||||
"""For Painless Scripting, it returns the script source based on space type."""
|
||||
source_value = (
|
||||
"(1.0 + " + space_type + "(" + str(query_vector) + ", doc['vector_field']))"
|
||||
)
|
||||
if space_type == "cosineSimilarity":
|
||||
return source_value
|
||||
else:
|
||||
return "1/" + source_value
|
||||
|
||||
|
||||
def _default_painless_scripting_query(
|
||||
query_vector: List[float],
|
||||
space_type: str = "l2Squared",
|
||||
pre_filter: Dict = MATCH_ALL_QUERY,
|
||||
) -> Dict:
|
||||
"""For Painless Scripting Search, this is the default query."""
|
||||
source = __get_painless_scripting_source(space_type, query_vector)
|
||||
return {
|
||||
"query": {
|
||||
"script_score": {
|
||||
"query": pre_filter,
|
||||
"script": {
|
||||
"source": source,
|
||||
"params": {
|
||||
"field": "vector_field",
|
||||
"query_value": query_vector,
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def _get_kwargs_value(kwargs: Any, key: str, default_value: Any) -> Any:
|
||||
"""Get the value of the key if present. Else get the default_value."""
|
||||
if key in kwargs:
|
||||
return kwargs.get(key)
|
||||
return default_value
|
||||
|
||||
|
||||
class OpenSearchVectorSearch(VectorStore):
|
||||
"""Wrapper around OpenSearch as a vector database.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import OpenSearchVectorSearch
|
||||
opensearch_vector_search = OpenSearchVectorSearch(
|
||||
"http://localhost:9200",
|
||||
"embeddings",
|
||||
embedding_function
|
||||
)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, opensearch_url: str, index_name: str, embedding_function: Embeddings
|
||||
):
|
||||
"""Initialize with necessary components."""
|
||||
self.embedding_function = embedding_function
|
||||
self.index_name = index_name
|
||||
self.client = _get_opensearch_client(opensearch_url)
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
bulk_size: int = 500,
|
||||
) -> List[str]:
|
||||
"""Run more texts through the embeddings and add to the vectorstore.
|
||||
|
||||
Args:
|
||||
texts: Iterable of strings to add to the vectorstore.
|
||||
metadatas: Optional list of metadatas associated with the texts.
|
||||
bulk_size: Bulk API request count; Default: 500
|
||||
|
||||
Returns:
|
||||
List of ids from adding the texts into the vectorstore.
|
||||
"""
|
||||
embeddings = [
|
||||
self.embedding_function.embed_documents(list(text))[0] for text in texts
|
||||
]
|
||||
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
|
||||
return _bulk_ingest_embeddings(
|
||||
self.client, self.index_name, embeddings, texts, metadatas
|
||||
)
|
||||
|
||||
def similarity_search(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
) -> List[Document]:
|
||||
"""Return docs most similar to query.
|
||||
|
||||
By default supports Approximate Search.
|
||||
Also supports Script Scoring and Painless Scripting.
|
||||
|
||||
Args:
|
||||
query: Text to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
|
||||
Returns:
|
||||
List of Documents most similar to the query.
|
||||
|
||||
Optional Args for Approximate Search:
|
||||
search_type: "approximate_search"; default: "approximate_search"
|
||||
size: number of results the query actually returns; default: 4
|
||||
|
||||
Optional Args for Script Scoring Search:
|
||||
search_type: "script_scoring"; default: "approximate_search"
|
||||
|
||||
space_type: "l2", "l1", "linf", "cosinesimil", "innerproduct",
|
||||
"hammingbit"; default: "l2"
|
||||
|
||||
pre_filter: script_score query to pre-filter documents before identifying
|
||||
nearest neighbors; default: {"match_all": {}}
|
||||
|
||||
Optional Args for Painless Scripting Search:
|
||||
search_type: "painless_scripting"; default: "approximate_search"
|
||||
space_type: "l2Squared", "l1Norm", "cosineSimilarity"; default: "l2Squared"
|
||||
|
||||
pre_filter: script_score query to pre-filter documents before identifying
|
||||
nearest neighbors; default: {"match_all": {}}
|
||||
"""
|
||||
embedding = self.embedding_function.embed_query(query)
|
||||
search_type = _get_kwargs_value(kwargs, "search_type", "approximate_search")
|
||||
if search_type == "approximate_search":
|
||||
size = _get_kwargs_value(kwargs, "size", 4)
|
||||
search_query = _default_approximate_search_query(embedding, size, k)
|
||||
elif search_type == SCRIPT_SCORING_SEARCH:
|
||||
space_type = _get_kwargs_value(kwargs, "space_type", "l2")
|
||||
pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY)
|
||||
search_query = _default_script_query(embedding, space_type, pre_filter)
|
||||
elif search_type == PAINLESS_SCRIPTING_SEARCH:
|
||||
space_type = _get_kwargs_value(kwargs, "space_type", "l2Squared")
|
||||
pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY)
|
||||
search_query = _default_painless_scripting_query(
|
||||
embedding, space_type, pre_filter
|
||||
)
|
||||
else:
|
||||
raise ValueError("Invalid `search_type` provided as an argument")
|
||||
|
||||
response = self.client.search(index=self.index_name, body=search_query)
|
||||
hits = [hit["_source"] for hit in response["hits"]["hits"][:k]]
|
||||
documents = [
|
||||
Document(page_content=hit["text"], metadata=hit["metadata"]) for hit in hits
|
||||
]
|
||||
return documents
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls,
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
bulk_size: int = 500,
|
||||
**kwargs: Any,
|
||||
) -> OpenSearchVectorSearch:
|
||||
"""Construct OpenSearchVectorSearch wrapper from raw documents.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain import OpenSearchVectorSearch
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
embeddings = OpenAIEmbeddings()
|
||||
opensearch_vector_search = OpenSearchVectorSearch.from_texts(
|
||||
texts,
|
||||
embeddings,
|
||||
opensearch_url="http://localhost:9200"
|
||||
)
|
||||
|
||||
OpenSearch by default supports Approximate Search powered by nmslib, faiss
|
||||
and lucene engines recommended for large datasets. Also supports brute force
|
||||
search through Script Scoring and Painless Scripting.
|
||||
|
||||
Optional Keyword Args for Approximate Search:
|
||||
engine: "nmslib", "faiss", "hnsw"; default: "nmslib"
|
||||
|
||||
space_type: "l2", "l1", "cosinesimil", "linf", "innerproduct"; default: "l2"
|
||||
|
||||
ef_search: Size of the dynamic list used during k-NN searches. Higher values
|
||||
lead to more accurate but slower searches; default: 512
|
||||
|
||||
ef_construction: Size of the dynamic list used during k-NN graph creation.
|
||||
Higher values lead to more accurate graph but slower indexing speed;
|
||||
default: 512
|
||||
|
||||
m: Number of bidirectional links created for each new element. Large impact
|
||||
on memory consumption. Between 2 and 100; default: 16
|
||||
|
||||
Keyword Args for Script Scoring or Painless Scripting:
|
||||
is_appx_search: False
|
||||
|
||||
"""
|
||||
opensearch_url = get_from_dict_or_env(
|
||||
kwargs, "opensearch_url", "OPENSEARCH_URL"
|
||||
)
|
||||
client = _get_opensearch_client(opensearch_url)
|
||||
embeddings = embedding.embed_documents(texts)
|
||||
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
|
||||
dim = len(embeddings[0])
|
||||
index_name = uuid.uuid4().hex
|
||||
is_appx_search = _get_kwargs_value(kwargs, "is_appx_search", True)
|
||||
if is_appx_search:
|
||||
engine = _get_kwargs_value(kwargs, "engine", "nmslib")
|
||||
space_type = _get_kwargs_value(kwargs, "space_type", "l2")
|
||||
ef_search = _get_kwargs_value(kwargs, "ef_search", 512)
|
||||
ef_construction = _get_kwargs_value(kwargs, "ef_construction", 512)
|
||||
m = _get_kwargs_value(kwargs, "m", 16)
|
||||
|
||||
mapping = _default_text_mapping(
|
||||
dim, engine, space_type, ef_search, ef_construction, m
|
||||
)
|
||||
else:
|
||||
mapping = _default_scripting_text_mapping(dim)
|
||||
|
||||
client.indices.create(index=index_name, body=mapping)
|
||||
_bulk_ingest_embeddings(client, index_name, embeddings, texts, metadatas)
|
||||
return cls(opensearch_url, index_name, embedding)
|
27
poetry.lock
generated
27
poetry.lock
generated
@ -3552,6 +3552,29 @@ dev = ["black (>=21.6b0,<22.0)", "pytest (>=6.0.0,<7.0.0)", "pytest-asyncio", "p
|
||||
embeddings = ["matplotlib", "numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)", "plotly", "scikit-learn (>=1.0.2)", "sklearn", "tenacity (>=8.0.1)"]
|
||||
wandb = ["numpy", "openpyxl (>=3.0.7)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)", "wandb"]
|
||||
|
||||
[[package]]
|
||||
name = "opensearch-py"
|
||||
version = "2.1.1"
|
||||
description = "Python low-level client for OpenSearch"
|
||||
category = "main"
|
||||
optional = true
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, <4"
|
||||
files = [
|
||||
{file = "opensearch-py-2.1.1.tar.gz", hash = "sha256:dd54a50c6771bc2582741bfdcf629b8d7eed409ae7fc2722249e53f9a10de0d8"},
|
||||
{file = "opensearch_py-2.1.1-py2.py3-none-any.whl", hash = "sha256:3e7085bf25487979581416f4ab195c2fe62e90f1f07f393091f8233cbea032eb"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
certifi = "*"
|
||||
requests = ">=2.4.0,<3.0.0"
|
||||
urllib3 = ">=1.21.1,<2"
|
||||
|
||||
[package.extras]
|
||||
async = ["aiohttp (>=3,<4)"]
|
||||
develop = ["black", "botocore", "coverage", "jinja2", "mock", "myst-parser", "pytest", "pytest-cov", "pyyaml", "requests (>=2.0.0,<3.0.0)", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"]
|
||||
docs = ["myst-parser", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"]
|
||||
kerberos = ["requests-kerberos"]
|
||||
|
||||
[[package]]
|
||||
name = "opt-einsum"
|
||||
version = "3.3.0"
|
||||
@ -7039,10 +7062,10 @@ docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "rst.linker
|
||||
testing = ["flake8 (<5)", "func-timeout", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)"]
|
||||
|
||||
[extras]
|
||||
all = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "google-search-results", "faiss-cpu", "sentence-transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx"]
|
||||
all = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence-transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx"]
|
||||
llms = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
||||
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.8.1,<4.0"
|
||||
content-hash = "690fdd08a207a73cb343cfdf25f7ae7d4177dc39b704d8655f3a4f26a881c2fc"
|
||||
content-hash = "7997201f64373247d8799baed84a5ad11ab3d92e26cc2114b26e734cfb9664a4"
|
||||
|
@ -20,6 +20,7 @@ numpy = "^1"
|
||||
faiss-cpu = {version = "^1", optional = true}
|
||||
wikipedia = {version = "^1", optional = true}
|
||||
elasticsearch = {version = "^8", optional = true}
|
||||
opensearch-py = {version = "^2.0.0", optional = true}
|
||||
redis = {version = "^4", optional = true}
|
||||
manifest-ml = {version = "^0.0.1", optional = true}
|
||||
spacy = {version = "^3", optional = true}
|
||||
@ -94,7 +95,7 @@ playwright = "^1.28.0"
|
||||
|
||||
[tool.poetry.extras]
|
||||
llms = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "torch", "transformers"]
|
||||
all = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "google-search-results", "faiss-cpu", "sentence_transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx"]
|
||||
all = ["anthropic", "cohere", "openai", "nlpcloud", "huggingface_hub", "manifest-ml", "elasticsearch", "opensearch-py", "google-search-results", "faiss-cpu", "sentence_transformers", "transformers", "spacy", "nltk", "wikipedia", "beautifulsoup4", "tiktoken", "torch", "jinja2", "pinecone-client", "weaviate-client", "redis", "google-api-python-client", "wolframalpha", "qdrant-client", "tensorflow-text", "pypdf", "networkx"]
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
|
128
tests/integration_tests/vectorstores/test_opensearch.py
Normal file
128
tests/integration_tests/vectorstores/test_opensearch.py
Normal file
@ -0,0 +1,128 @@
|
||||
"""Test OpenSearch functionality."""
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.vectorstores.opensearch_vector_search import (
|
||||
PAINLESS_SCRIPTING_SEARCH,
|
||||
SCRIPT_SCORING_SEARCH,
|
||||
OpenSearchVectorSearch,
|
||||
)
|
||||
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
||||
|
||||
DEFAULT_OPENSEARCH_URL = "http://localhost:9200"
|
||||
texts = ["foo", "bar", "baz"]
|
||||
|
||||
|
||||
def test_opensearch() -> None:
|
||||
"""Test end to end indexing and search using Approximate Search."""
|
||||
docsearch = OpenSearchVectorSearch.from_texts(
|
||||
texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
def test_opensearch_with_metadatas() -> None:
|
||||
"""Test end to end indexing and search with metadata."""
|
||||
metadatas = [{"page": i} for i in range(len(texts))]
|
||||
docsearch = OpenSearchVectorSearch.from_texts(
|
||||
texts,
|
||||
FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
opensearch_url=DEFAULT_OPENSEARCH_URL,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo", metadata={"page": 0})]
|
||||
|
||||
|
||||
def test_add_text() -> None:
|
||||
"""Test adding additional text elements to existing index."""
|
||||
text_input = ["test", "add", "text", "method"]
|
||||
metadatas = [{"page": i} for i in range(len(text_input))]
|
||||
docsearch = OpenSearchVectorSearch.from_texts(
|
||||
texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL
|
||||
)
|
||||
docids = OpenSearchVectorSearch.add_texts(docsearch, text_input, metadatas)
|
||||
assert len(docids) == len(text_input)
|
||||
|
||||
|
||||
def test_opensearch_script_scoring() -> None:
|
||||
"""Test end to end indexing and search using Script Scoring Search."""
|
||||
pre_filter_val = {"bool": {"filter": {"term": {"text": "bar"}}}}
|
||||
docsearch = OpenSearchVectorSearch.from_texts(
|
||||
texts,
|
||||
FakeEmbeddings(),
|
||||
opensearch_url=DEFAULT_OPENSEARCH_URL,
|
||||
is_appx_search=False,
|
||||
)
|
||||
output = docsearch.similarity_search(
|
||||
"foo", k=1, search_type=SCRIPT_SCORING_SEARCH, pre_filter=pre_filter_val
|
||||
)
|
||||
assert output == [Document(page_content="bar")]
|
||||
|
||||
|
||||
def test_add_text_script_scoring() -> None:
|
||||
"""Test adding additional text elements and validating using Script Scoring."""
|
||||
text_input = ["test", "add", "text", "method"]
|
||||
metadatas = [{"page": i} for i in range(len(text_input))]
|
||||
docsearch = OpenSearchVectorSearch.from_texts(
|
||||
text_input,
|
||||
FakeEmbeddings(),
|
||||
opensearch_url=DEFAULT_OPENSEARCH_URL,
|
||||
is_appx_search=False,
|
||||
)
|
||||
OpenSearchVectorSearch.add_texts(docsearch, texts, metadatas)
|
||||
output = docsearch.similarity_search(
|
||||
"add", k=1, search_type=SCRIPT_SCORING_SEARCH, space_type="innerproduct"
|
||||
)
|
||||
assert output == [Document(page_content="test")]
|
||||
|
||||
|
||||
def test_opensearch_painless_scripting() -> None:
|
||||
"""Test end to end indexing and search using Painless Scripting Search."""
|
||||
pre_filter_val = {"bool": {"filter": {"term": {"text": "baz"}}}}
|
||||
docsearch = OpenSearchVectorSearch.from_texts(
|
||||
texts,
|
||||
FakeEmbeddings(),
|
||||
opensearch_url=DEFAULT_OPENSEARCH_URL,
|
||||
is_appx_search=False,
|
||||
)
|
||||
output = docsearch.similarity_search(
|
||||
"foo", k=1, search_type=PAINLESS_SCRIPTING_SEARCH, pre_filter=pre_filter_val
|
||||
)
|
||||
assert output == [Document(page_content="baz")]
|
||||
|
||||
|
||||
def test_add_text_painless_scripting() -> None:
|
||||
"""Test adding additional text elements and validating using Painless Scripting."""
|
||||
text_input = ["test", "add", "text", "method"]
|
||||
metadatas = [{"page": i} for i in range(len(text_input))]
|
||||
docsearch = OpenSearchVectorSearch.from_texts(
|
||||
text_input,
|
||||
FakeEmbeddings(),
|
||||
opensearch_url=DEFAULT_OPENSEARCH_URL,
|
||||
is_appx_search=False,
|
||||
)
|
||||
OpenSearchVectorSearch.add_texts(docsearch, texts, metadatas)
|
||||
output = docsearch.similarity_search(
|
||||
"add", k=1, search_type=PAINLESS_SCRIPTING_SEARCH, space_type="cosineSimilarity"
|
||||
)
|
||||
assert output == [Document(page_content="test")]
|
||||
|
||||
|
||||
def test_opensearch_invalid_search_type() -> None:
|
||||
"""Test to validate similarity_search by providing invalid search_type."""
|
||||
docsearch = OpenSearchVectorSearch.from_texts(
|
||||
texts, FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL
|
||||
)
|
||||
with pytest.raises(ValueError):
|
||||
docsearch.similarity_search("foo", k=1, search_type="invalid_search_type")
|
||||
|
||||
|
||||
def test_opensearch_embedding_size_zero() -> None:
|
||||
"""Test to validate indexing when embedding size is zero."""
|
||||
with pytest.raises(RuntimeError):
|
||||
OpenSearchVectorSearch.from_texts(
|
||||
[], FakeEmbeddings(), opensearch_url=DEFAULT_OPENSEARCH_URL
|
||||
)
|
Loading…
Reference in New Issue
Block a user