langchain/docs/modules/indexes/document_loaders/examples/iugu.ipynb

87 lines
2.2 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Iugu\n",
"\n",
">[Iugu](https://www.iugu.com/) is a Brazilian services and software as a service (SaaS) company. It offers payment-processing software and application programming interfaces for e-commerce websites and mobile applications.\n",
"\n",
"This notebook covers how to load data from the `Iugu REST API` into a format that can be ingested into LangChain, along with example usage for vectorization."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"\n",
"from langchain.document_loaders import IuguLoader\n",
"from langchain.indexes import VectorstoreIndexCreator"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"The Iugu API requires an access token, which can be found inside of the Iugu dashboard.\n",
"\n",
"This document loader also requires a `resource` option which defines what data you want to load.\n",
"\n",
"Following resources are available:\n",
"\n",
"`Documentation` [Documentation](https://dev.iugu.com/reference/metadados)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"iugu_loader = IuguLoader(\"charges\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create a vectorstore retriver from the loader\n",
"# see https://python.langchain.com/en/latest/modules/indexes/getting_started.html for more details\n",
"\n",
"index = VectorstoreIndexCreator().from_loaders([iugu_loader])\n",
"iugu_doc_retriever = index.vectorstore.as_retriever()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}