forked from Archives/langchain
167 lines
4.6 KiB
Plaintext
167 lines
4.6 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "bb0735c0",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Few Shot Examples\n",
|
||
|
"\n",
|
||
|
"This notebook covers how to use few shot examples in chat models.\n",
|
||
|
"\n",
|
||
|
"There does not appear to be solid consensus on how best to do few shot prompting. As a result, we are not solidifying any abstractions around this yet but rather using existing abstractions."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "c6e9664c",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Alternating Human/AI messages\n",
|
||
|
"The first way of doing few shot prompting relies on using alternating human/ai messages. See an example of this below."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"id": "62156fe4",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from langchain.chat_models import ChatOpenAI\n",
|
||
|
"from langchain import PromptTemplate, LLMChain\n",
|
||
|
"from langchain.prompts.chat import (\n",
|
||
|
" ChatPromptTemplate,\n",
|
||
|
" SystemMessagePromptTemplate,\n",
|
||
|
" AIMessagePromptTemplate,\n",
|
||
|
" HumanMessagePromptTemplate,\n",
|
||
|
")\n",
|
||
|
"from langchain.schema import (\n",
|
||
|
" AIMessage,\n",
|
||
|
" HumanMessage,\n",
|
||
|
" SystemMessage\n",
|
||
|
")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"id": "ed7ac3c6",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"chat = ChatOpenAI(temperature=0)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"id": "98791aa9",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"template=\"You are a helpful assistant that translates english to pirate.\"\n",
|
||
|
"system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
|
||
|
"example_human = HumanMessagePromptTemplate.from_template(\"Hi\")\n",
|
||
|
"example_ai = AIMessagePromptTemplate.from_template(\"Argh me mateys\")\n",
|
||
|
"human_template=\"{text}\"\n",
|
||
|
"human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"id": "4eebdcd7",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"\"I be lovin' programmin', me hearty!\""
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])\n",
|
||
|
"chain = LLMChain(llm=chat, prompt=chat_prompt)\n",
|
||
|
"# get a chat completion from the formatted messages\n",
|
||
|
"chain.run(\"I love programming.\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "5c4135d7",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## System Messages\n",
|
||
|
"\n",
|
||
|
"OpenAI provides an optional `name` parameter that they also recommend using in conjunction with system messages to do few shot prompting. Here is an example of how to do that below."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"id": "1ba92d59",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"template=\"You are a helpful assistant that translates english to pirate.\"\n",
|
||
|
"system_message_prompt = SystemMessagePromptTemplate.from_template(template)\n",
|
||
|
"example_human = SystemMessagePromptTemplate.from_template(\"Hi\", additional_kwargs={\"name\": \"example_user\"})\n",
|
||
|
"example_ai = SystemMessagePromptTemplate.from_template(\"Argh me mateys\", additional_kwargs={\"name\": \"example_assistant\"})\n",
|
||
|
"human_template=\"{text}\"\n",
|
||
|
"human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"id": "56e488a7",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"\"I be lovin' programmin', me hearty.\""
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 6,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, example_human, example_ai, human_message_prompt])\n",
|
||
|
"chain = LLMChain(llm=chat, prompt=chat_prompt)\n",
|
||
|
"# get a chat completion from the formatted messages\n",
|
||
|
"chain.run(\"I love programming.\")"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.9.1"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|