langchain/langchain/agents/self_ask_with_search/base.py

82 lines
2.8 KiB
Python
Raw Normal View History

2022-11-22 14:16:26 +00:00
"""Chain that does self ask with search."""
2022-12-19 02:51:23 +00:00
from typing import Any, List, Optional, Tuple
2022-11-22 14:16:26 +00:00
2022-12-19 02:51:23 +00:00
from langchain.agents.agent import Agent, AgentExecutor
2022-11-22 14:16:26 +00:00
from langchain.agents.self_ask_with_search.prompt import PROMPT
from langchain.agents.tools import Tool
from langchain.llms.base import BaseLLM
2022-11-22 14:16:26 +00:00
from langchain.prompts.base import BasePromptTemplate
2022-11-30 04:07:44 +00:00
from langchain.serpapi import SerpAPIWrapper
2022-11-22 14:16:26 +00:00
class SelfAskWithSearchAgent(Agent):
"""Agent for the self-ask-with-search paper."""
2022-12-19 02:51:23 +00:00
@classmethod
def create_prompt(cls, tools: List[Tool]) -> BasePromptTemplate:
"""Prompt does not depend on tools."""
return PROMPT
2022-11-22 14:16:26 +00:00
@classmethod
def _validate_tools(cls, tools: List[Tool]) -> None:
if len(tools) != 1:
raise ValueError(f"Exactly one tool must be specified, but got {tools}")
tool_names = {tool.name for tool in tools}
if tool_names != {"Intermediate Answer"}:
raise ValueError(
f"Tool name should be Intermediate Answer, got {tool_names}"
)
2022-11-26 23:15:43 +00:00
def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
2022-11-22 14:16:26 +00:00
followup = "Follow up:"
last_line = text.split("\n")[-1]
2022-11-22 14:16:26 +00:00
if followup not in last_line:
finish_string = "So the final answer is: "
if finish_string not in last_line:
2022-11-26 23:15:43 +00:00
return None
return "Final Answer", last_line[len(finish_string) :]
2022-11-22 14:16:26 +00:00
after_colon = text.split(":")[-1]
2022-11-22 14:16:26 +00:00
if " " == after_colon[0]:
after_colon = after_colon[1:]
return "Intermediate Answer", after_colon
2022-11-26 23:15:43 +00:00
def _fix_text(self, text: str) -> str:
return f"{text}\nSo the final answer is:"
2022-11-26 23:15:43 +00:00
2022-11-22 14:16:26 +00:00
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Intermediate answer: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the LLM call with."""
return ""
@property
def starter_string(self) -> str:
"""Put this string after user input but before first LLM call."""
2022-12-19 02:51:23 +00:00
return "Are follow up questions needed here:"
2022-11-22 14:16:26 +00:00
2022-12-19 02:51:23 +00:00
class SelfAskWithSearchChain(AgentExecutor):
2022-11-22 14:16:26 +00:00
"""Chain that does self ask with search.
Example:
.. code-block:: python
2022-11-30 04:07:44 +00:00
from langchain import SelfAskWithSearchChain, OpenAI, SerpAPIWrapper
search_chain = SerpAPIWrapper()
2022-11-22 14:16:26 +00:00
self_ask = SelfAskWithSearchChain(llm=OpenAI(), search_chain=search_chain)
"""
def __init__(self, llm: BaseLLM, search_chain: SerpAPIWrapper, **kwargs: Any):
2022-11-22 14:16:26 +00:00
"""Initialize with just an LLM and a search chain."""
search_tool = Tool(name="Intermediate Answer", func=search_chain.run)
2022-12-19 02:51:23 +00:00
agent = SelfAskWithSearchAgent.from_llm_and_tools(llm, [search_tool])
super().__init__(agent=agent, tools=[search_tool], **kwargs)