langchain/docs/modules/indexes/text_splitters/examples/huggingface_length_function.ipynb

106 lines
2.7 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "13dc0983",
"metadata": {},
"source": [
"# Hugging Face tokenizer\n",
"\n",
">[Hugging Face](https://huggingface.co/docs/tokenizers/index) has many tokenizers.\n",
"\n",
"We use Hugging Face tokenizer, the [GPT2TokenizerFast](https://huggingface.co/Ransaka/gpt2-tokenizer-fast) to count the text length in tokens.\n",
"\n",
"1. How the text is split: by character passed in\n",
"2. How the chunk size is measured: by number of tokens calculated by the `Hugging Face` tokenizer\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a8ce51d5",
"metadata": {},
"outputs": [],
"source": [
"from transformers import GPT2TokenizerFast\n",
"\n",
"tokenizer = GPT2TokenizerFast.from_pretrained(\"gpt2\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "388369ed",
"metadata": {},
"outputs": [],
"source": [
"# This is a long document we can split up.\n",
"with open('../../../state_of_the_union.txt') as f:\n",
" state_of_the_union = f.read()\n",
"from langchain.text_splitter import CharacterTextSplitter"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ca5e72c0",
"metadata": {},
"outputs": [],
"source": [
"text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(tokenizer, chunk_size=100, chunk_overlap=0)\n",
"texts = text_splitter.split_text(state_of_the_union)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "37cdfbeb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans. \n",
"\n",
"Last year COVID-19 kept us apart. This year we are finally together again. \n",
"\n",
"Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \n",
"\n",
"With a duty to one another to the American people to the Constitution.\n"
]
}
],
"source": [
"print(texts[0])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}