forked from Archives/langchain
80 lines
2.5 KiB
Markdown
80 lines
2.5 KiB
Markdown
|
# Redis
|
||
|
|
||
|
This page covers how to use the [Redis](https://redis.com) ecosystem within LangChain.
|
||
|
It is broken into two parts: installation and setup, and then references to specific Redis wrappers.
|
||
|
|
||
|
## Installation and Setup
|
||
|
- Install the Redis Python SDK with `pip install redis`
|
||
|
|
||
|
## Wrappers
|
||
|
|
||
|
### Cache
|
||
|
|
||
|
The Cache wrapper allows for [Redis](https://redis.io) to be used as a remote, low-latency, in-memory cache for LLM prompts and responses.
|
||
|
|
||
|
#### Standard Cache
|
||
|
The standard cache is the Redis bread & butter of use case in production for both [open source](https://redis.io) and [enterprise](https://redis.com) users globally.
|
||
|
|
||
|
To import this cache:
|
||
|
```python
|
||
|
from langchain.cache import RedisCache
|
||
|
```
|
||
|
|
||
|
To use this cache with your LLMs:
|
||
|
```python
|
||
|
import langchain
|
||
|
import redis
|
||
|
|
||
|
redis_client = redis.Redis.from_url(...)
|
||
|
langchain.llm_cache = RedisCache(redis_client)
|
||
|
```
|
||
|
|
||
|
#### Semantic Cache
|
||
|
Semantic caching allows users to retrieve cached prompts based on semantic similarity between the user input and previously cached results. Under the hood it blends Redis as both a cache and a vectorstore.
|
||
|
|
||
|
To import this cache:
|
||
|
```python
|
||
|
from langchain.cache import RedisSemanticCache
|
||
|
```
|
||
|
|
||
|
To use this cache with your LLMs:
|
||
|
```python
|
||
|
import langchain
|
||
|
import redis
|
||
|
|
||
|
# use any embedding provider...
|
||
|
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
||
|
|
||
|
redis_url = "redis://localhost:6379"
|
||
|
|
||
|
langchain.llm_cache = RedisSemanticCache(
|
||
|
embedding=FakeEmbeddings(),
|
||
|
redis_url=redis_url
|
||
|
)
|
||
|
```
|
||
|
|
||
|
### VectorStore
|
||
|
|
||
|
The vectorstore wrapper turns Redis into a low-latency [vector database](https://redis.com/solutions/use-cases/vector-database/) for semantic search or LLM content retrieval.
|
||
|
|
||
|
To import this vectorstore:
|
||
|
```python
|
||
|
from langchain.vectorstores import Redis
|
||
|
```
|
||
|
|
||
|
For a more detailed walkthrough of the Redis vectorstore wrapper, see [this notebook](../modules/indexes/vectorstores/examples/redis.ipynb).
|
||
|
|
||
|
### Retriever
|
||
|
|
||
|
The Redis vector store retriever wrapper generalizes the vectorstore class to perform low-latency document retrieval. To create the retriever, simply call `.as_retriever()` on the base vectorstore class.
|
||
|
|
||
|
### Memory
|
||
|
Redis can be used to persist LLM conversations.
|
||
|
|
||
|
#### Vector Store Retriever Memory
|
||
|
|
||
|
For a more detailed walkthrough of the `VectorStoreRetrieverMemory` wrapper, see [this notebook](../modules/memory/types/vectorstore_retriever_memory.ipynb).
|
||
|
|
||
|
#### Chat Message History Memory
|
||
|
For a detailed example of Redis to cache conversation message history, see [this notebook](../modules/memory/examples/redis_chat_message_history.ipynb).
|