langchain/tests/integration_tests/test_faiss.py

48 lines
1.5 KiB
Python
Raw Normal View History

"""Test FAISS functionality."""
from typing import List
import pytest
from langchain.docstore.document import Document
from langchain.docstore.in_memory import InMemoryDocstore
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.faiss import FAISS
class FakeEmbeddings(Embeddings):
"""Fake embeddings functionality for testing."""
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Return simple embeddings."""
return [[i] * 10 for i in range(len(texts))]
def embed_query(self, text: str) -> List[float]:
"""Return simple embeddings."""
return [0] * 10
def test_faiss() -> None:
"""Test end to end construction and search."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
expected_docstore = InMemoryDocstore(
{
"0": Document(page_content="foo"),
"1": Document(page_content="bar"),
"2": Document(page_content="baz"),
}
)
assert docsearch.docstore.__dict__ == expected_docstore.__dict__
output = docsearch.similarity_search("foo", k=1)
assert output == [Document(page_content="foo")]
def test_faiss_search_not_found() -> None:
"""Test what happens when document is not found."""
texts = ["foo", "bar", "baz"]
docsearch = FAISS.from_texts(texts, FakeEmbeddings())
# Get rid of the docstore to purposefully induce errors.
docsearch.docstore = InMemoryDocstore({})
with pytest.raises(ValueError):
docsearch.similarity_search("foo")