2022-12-10 17:19:16 +00:00
{
"cells": [
{
2023-04-02 20:54:42 +00:00
"attachments": {},
2022-12-10 17:19:16 +00:00
"cell_type": "markdown",
"id": "b83e61ed",
"metadata": {},
"source": [
"# Moderation\n",
"This notebook walks through examples of how to use a moderation chain, and several common ways for doing so. Moderation chains are useful for detecting text that could be hateful, violent, etc. This can be useful to apply on both user input, but also on the output of a Language Model. Some API providers, like OpenAI, [specifically prohibit](https://beta.openai.com/docs/usage-policies/use-case-policy) you, or your end users, from generating some types of harmful content. To comply with this (and to just generally prevent your application from being harmful) you may often want to append a moderation chain to any LLMChains, in order to make sure any output the LLM generates is not harmful.\n",
"\n",
"If the content passed into the moderation chain is harmful, there is not one best way to handle it, it probably depends on your application. Sometimes you may want to throw an error in the Chain (and have your application handle that). Other times, you may want to return something to the user explaining that the text was harmful. There could even be other ways to handle it! We will cover all these ways in this notebook.\n",
"\n",
"In this notebook, we will show:\n",
"\n",
"1. How to run any piece of text through a moderation chain.\n",
2023-04-02 20:54:42 +00:00
"2. How to append a Moderation chain to an LLMChain."
2022-12-10 17:19:16 +00:00
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 1,
2022-12-10 17:19:16 +00:00
"id": "b7aa1ff2",
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.chains import OpenAIModerationChain, SequentialChain, LLMChain, SimpleSequentialChain\n",
"from langchain.prompts import PromptTemplate"
]
},
{
"cell_type": "markdown",
"id": "c26d5be6",
"metadata": {},
"source": [
"## How to use the moderation chain\n",
"\n",
"Here's an example of using the moderation chain with default settings (will return a string explaining stuff was flagged)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "fd0fc85c",
"metadata": {},
"outputs": [],
"source": [
"moderation_chain = OpenAIModerationChain()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "3fa47dd7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'This is okay'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"moderation_chain.run(\"This is okay\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "37bfad73",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Text was found that violates OpenAI's content policy.\""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"moderation_chain.run(\"I will kill you\")"
]
},
{
"cell_type": "markdown",
"id": "196820ab",
"metadata": {},
"source": [
"Here's an example of using the moderation chain to throw an error."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b29c1150",
"metadata": {},
"outputs": [],
"source": [
"moderation_chain_error = OpenAIModerationChain(error=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f9ab64d9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'This is okay'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"moderation_chain_error.run(\"This is okay\")"
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 7,
2022-12-10 17:19:16 +00:00
"id": "954f3da2",
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "Text was found that violates OpenAI's content policy.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mmoderation_chain_error\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mI will kill you\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/workplace/langchain/langchain/chains/base.py:138\u001b[0m, in \u001b[0;36mChain.run\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`run` supports only one positional argument.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 138\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_keys[\u001b[38;5;241m0\u001b[39m]]\n\u001b[1;32m 140\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m kwargs \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m args:\n\u001b[1;32m 141\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(kwargs)[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_keys[\u001b[38;5;241m0\u001b[39m]]\n",
"File \u001b[0;32m~/workplace/langchain/langchain/chains/base.py:112\u001b[0m, in \u001b[0;36mChain.__call__\u001b[0;34m(self, inputs, return_only_outputs)\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose:\n\u001b[1;32m 109\u001b[0m \u001b[38;5;28mprint\u001b[39m(\n\u001b[1;32m 110\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\033\u001b[39;00m\u001b[38;5;124m[1m> Entering new \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m chain...\u001b[39m\u001b[38;5;130;01m\\033\u001b[39;00m\u001b[38;5;124m[0m\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 111\u001b[0m )\n\u001b[0;32m--> 112\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose:\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\033\u001b[39;00m\u001b[38;5;124m[1m> Finished \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m chain.\u001b[39m\u001b[38;5;130;01m\\033\u001b[39;00m\u001b[38;5;124m[0m\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[0;32m~/workplace/langchain/langchain/chains/moderation.py:81\u001b[0m, in \u001b[0;36mOpenAIModerationChain._call\u001b[0;34m(self, inputs)\u001b[0m\n\u001b[1;32m 79\u001b[0m text \u001b[38;5;241m=\u001b[39m inputs[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minput_key]\n\u001b[1;32m 80\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclient\u001b[38;5;241m.\u001b[39mcreate(text)\n\u001b[0;32m---> 81\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_moderate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtext\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresults\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mresults\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 82\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m {\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_key: output}\n",
"File \u001b[0;32m~/workplace/langchain/langchain/chains/moderation.py:73\u001b[0m, in \u001b[0;36mOpenAIModerationChain._moderate\u001b[0;34m(self, text, results)\u001b[0m\n\u001b[1;32m 71\u001b[0m error_str \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mText was found that violates OpenAI\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124ms content policy.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39merror:\n\u001b[0;32m---> 73\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(error_str)\n\u001b[1;32m 74\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 75\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m error_str\n",
2022-12-10 17:19:16 +00:00
"\u001b[0;31mValueError\u001b[0m: Text was found that violates OpenAI's content policy."
]
}
],
"source": [
"moderation_chain_error.run(\"I will kill you\")"
]
},
{
"cell_type": "markdown",
"id": "8de5dcbb",
"metadata": {},
"source": [
"Here's an example of creating a custom moderation chain with a custom error message. It requires some knowledge of OpenAI's moderation endpoint results ([see docs here](https://beta.openai.com/docs/api-reference/moderations))."
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 8,
2022-12-10 17:19:16 +00:00
"id": "3960e985",
"metadata": {},
"outputs": [],
"source": [
"class CustomModeration(OpenAIModerationChain):\n",
" \n",
" def _moderate(self, text: str, results: dict) -> str:\n",
" if results[\"flagged\"]:\n",
" error_str = f\"The following text was found that violates OpenAI's content policy: {text}\"\n",
" return error_str\n",
" return text\n",
" \n",
"custom_moderation = CustomModeration()"
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 9,
2022-12-10 17:19:16 +00:00
"id": "1152ec11",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'This is okay'"
]
},
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 9,
2022-12-10 17:19:16 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"custom_moderation.run(\"This is okay\")"
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 10,
2022-12-10 17:19:16 +00:00
"id": "973257bf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"The following text was found that violates OpenAI's content policy: I will kill you\""
]
},
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 10,
2022-12-10 17:19:16 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"custom_moderation.run(\"I will kill you\")"
]
},
{
"cell_type": "markdown",
"id": "8718111f",
"metadata": {},
"source": [
"## How to append a Moderation chain to an LLMChain\n",
"\n",
"To easily combine a moderation chain with an LLMChain, you can use the SequentialChain abstraction.\n",
"\n",
"Let's start with a simple example of where the LLMChain only has a single input. For this purpose, we will prompt the model so it says something harmful."
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 11,
2022-12-10 17:19:16 +00:00
"id": "0d129333",
"metadata": {},
"outputs": [],
"source": [
"prompt = PromptTemplate(template=\"{text}\", input_variables=[\"text\"])\n",
"llm_chain = LLMChain(llm=OpenAI(temperature=0, model_name=\"text-davinci-002\"), prompt=prompt)"
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 12,
2022-12-10 17:19:16 +00:00
"id": "a557c531",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' I will kill you'"
]
},
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 12,
2022-12-10 17:19:16 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"text = \"\"\"We are playing a game of repeat after me.\n",
"\n",
"Person 1: Hi\n",
"Person 2: Hi\n",
"\n",
"Person 1: How's your day\n",
"Person 2: How's your day\n",
"\n",
"Person 1: I will kill you\n",
"Person 2:\"\"\"\n",
"llm_chain.run(text)"
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 13,
2022-12-10 17:19:16 +00:00
"id": "d4d10f1c",
"metadata": {},
"outputs": [],
"source": [
"chain = SimpleSequentialChain(chains=[llm_chain, moderation_chain])"
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 14,
2022-12-10 17:19:16 +00:00
"id": "02f37985",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"Text was found that violates OpenAI's content policy.\""
]
},
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 14,
2022-12-10 17:19:16 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(text)"
]
},
{
"cell_type": "markdown",
"id": "72643128",
"metadata": {},
"source": [
"Now let's walk through an example of using it with an LLMChain which has multiple inputs (a bit more tricky because we can't use the SimpleSequentialChain)"
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 15,
2022-12-10 17:19:16 +00:00
"id": "7118ec36",
"metadata": {},
"outputs": [],
"source": [
"prompt = PromptTemplate(template=\"{setup}{new_input}Person2:\", input_variables=[\"setup\", \"new_input\"])\n",
"llm_chain = LLMChain(llm=OpenAI(temperature=0, model_name=\"text-davinci-002\"), prompt=prompt)"
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 16,
2022-12-10 17:19:16 +00:00
"id": "003bdfce",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'text': ' I will kill you'}"
]
},
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 16,
2022-12-10 17:19:16 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"setup = \"\"\"We are playing a game of repeat after me.\n",
"\n",
"Person 1: Hi\n",
"Person 2: Hi\n",
"\n",
"Person 1: How's your day\n",
"Person 2: How's your day\n",
"\n",
"Person 1:\"\"\"\n",
"new_input = \"I will kill you\"\n",
"inputs = {\"setup\": setup, \"new_input\": new_input}\n",
"llm_chain(inputs, return_only_outputs=True)"
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 17,
2022-12-10 17:19:16 +00:00
"id": "77b64228",
"metadata": {},
"outputs": [],
"source": [
"# Setting the input/output keys so it lines up\n",
"moderation_chain.input_key = \"text\"\n",
"moderation_chain.output_key = \"sanitized_text\""
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 18,
2022-12-10 17:19:16 +00:00
"id": "998a95be",
"metadata": {},
"outputs": [],
"source": [
"chain = SequentialChain(chains=[llm_chain, moderation_chain], input_variables=[\"setup\", \"new_input\"])"
]
},
{
"cell_type": "code",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 19,
2022-12-10 17:19:16 +00:00
"id": "9c97a136",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'sanitized_text': \"Text was found that violates OpenAI's content policy.\"}"
]
},
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"execution_count": 19,
2022-12-10 17:19:16 +00:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain(inputs, return_only_outputs=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ddc90e15",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
"version": "3.10.9"
2022-12-10 17:19:16 +00:00
}
},
"nbformat": 4,
"nbformat_minor": 5
}