Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
# Summarization
Summarization involves creating a smaller summary of multiple longer documents.
2023-01-09 03:20:13 +00:00
This can be useful for distilling long documents into the core pieces of information.
The recommended way to get started using a summarization chain is:
```python
from langchain.chains.summarize import load_summarize_chain
chain = load_summarize_chain(llm, chain_type="map_reduce")
chain.run(docs)
```
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
The following resources exist:
2023-01-12 14:29:42 +00:00
- [Summarization Notebook ](../modules/chains/combine_docs_examples/summarize.ipynb ): A notebook walking through how to accomplish this task.
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:
- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.
There is also a full reference section, as well as extra resources
(glossary, gallery, etc)
Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 16:24:09 +00:00
Additional related resources include:
2023-01-12 14:29:42 +00:00
- [Utilities for working with Documents ](../modules/utils/how_to_guides.rst ): Guides on how to use several of the utilities which will prove helpful for this task, including Text Splitters (for splitting up long documents).
- [CombineDocuments Chains ](../modules/chains/combine_docs.md ): A conceptual overview of specific types of chains by which you can accomplish this task.
- [Data Augmented Generation ](./combine_docs.md ): An overview of data augmented generation, which is the general concept of combining external data with LLMs (of which this is a subset).