Introduces a minimum buy Bitcoin amount similar to the maximum amount already present.
For the CLI the minimum amount is enforced by waiting until at least the minimum is available as max-giveable amount.
Each test spawns swarm for Alice and Bob that only contains the spot_price behaviours and uses a memory transport.
Tests cover happy path (i.e. expected price is returned) and error scenarios.
Implementation of `TestRate` on `LatestRate` allows testing rate fetch error and quote calculation error behaviour.
Thanks to @thomaseizinger for ramping up the test framework for comit-rs in the past!
What goes over the wire should not be coupled to the errors being printed.
For the CLI and ASB we introduce a separate error enum that is used for logging.
When sending over the wire the errors are mapped to and from the `network::spot_price::Error`.
As part of Bob-specific spot_price code was moved from the network into bob.
Clearly separation of the network API from bob/alice.
Move Alice's spot price logic into a dedicated network behaviour that handles all the logic.
The new behaviour encapsulates the complete state necessary for spot price request decision making.
The network behaviour cannot handle asynchronous calls, thus the balance is managed inside the spot price and has to updated regularly from the outside to ensure the spot price balance check has up to date data.
At the moment the balance is updated upon an incoming quote requests.
Code that is relevant for both ASB and CLI remains in the `network::spot_price` module (e.g. `network::spot_price::Error`).
When a CLI requests a spot price have some errors that are expected, where we can provide a proper error message for the CLI:
- Balance of ASB too low
- Buy amount sent by CLI exceeds maximum buy amount accepted by ASB
- ASB is running in maintenance mode and does not accept incoming swap requests
All of these errors returns a proper error to the CLI and prints a warning in the ASB logs.
Any other unexpected error will result in closing the channel with the CLI and printing an error in the ASB logs.
Resume-only is a maintenance mode where no swaps are accepted but unfinished swaps are resumed.
This is achieve by ignoring incoming spot-price requests (that would lead to execution setup) in the event-loop.
Bob validates that incoming transfer proof messages are coming from the peer-id of Alice.
Currently Bob will ignore any transfer proof message that is not coming from the counterparty peer-id associated to the current swap in execution.
Once we add support for trying to save received transfer proofs for swaps that are currently not in execution we can also adapy allowing this for different counterparty peer-ids. This requires access to the database in Bob's event loop.
This PR does a few things.
* It adds a TorTransport which either dials through Tor's socks5 proxy or via clearnet.
* It enables ASB to register hidden services for each network it is listening on. We assume that we only care about different ports and re-use the same onion-address for all of them. The ASB requires to have access to Tor's control port.
* It adds support to dial through a local Tor socks5 proxy. We assume that Tor is always available on localhost. Swap cli only requires Tor to be running so that it can send messages via Tor's socks5 proxy.
* It adds a new e2e test which swaps through Tor. For this we assume that Tor is currently running on localhost. All other tests are running via clear net.
A `RequestResponseCodec` for pull-based protocols where the response is encoded using JSON.
This was added to more properly express the behavior of the quote protocol, where the dialer
doesn't send any message and expects the listener to directly send the response.
Co-authored-by: Thomas Eizinger <thomas@eizinger.io>
- Listen on both tcp and websockets as default
- Listening addresses in config as array
- Configure fallback transport using `or_transport` - if listening on a given address fails on WS, we fall back to TCP.
Instead of forwarding every error, we deliberately ignore certain
variants that are not worth being printed to the log. In particular,
this concerns "UnsupportedProtocols" and "ResponseOmission".
To make this less verbose we introduce a macro for mapping a
`RequestResponseEvent` to `{alice,bob}::OutEvent`. We use a macro
because those `OutEvent`s are different types and the only other
way of abstracting over them would be to introduce traits that we
implement on both of them.
To make the macro easier to use, we move all the `From` implementations
that convert between the protocol and the more high-level behaviour
into the actual protocol module.
- Swap-id is exchanged during execution setup. CLI (Bob) sends the swap-id to be used in his first message.
- Transfer poof and encryption signature messages include the swap-id so it can be properly associated with the correct swap.
- ASB: Encryption signatures are associated with swaps by swap-id, not peer-id.
- ASB: Transfer proofs are still associated to peer-ids (because they have to be sent to the respective peer), but the ASB can buffer multiple
- CLI: Incoming transfer proofs are checked for matching swap-id. If a transfer proof with a different swap-id than the current executing swap is received it will be ignored. We can change this to saving into the database.
Includes concurrent swap tests with the same Bob.
- One test that pauses and starts an additional swap after the transfer proof was received. Results in both swaps being redeemed after resuming the first swap.
- One test that pauses and starts an additional swap before the transfer proof is sent (just after BTC locked). Results in the second swap redeeming and the first swap being refunded (because the transfer proof on Bob's side is lost). Once we store transfer proofs that we receive during executing a different swap into the database both swaps should redeem.
Note that the monero harness was adapted to allow creating wallets with multiple outputs, which is needed for Alice.
The swap should not be concerned with connection handling. This is
the responsibility of the overall application.
All but the execution-setup NetworkBehaviour are `request-response`
behaviours. These have built-in functionality to automatically emit
a dial attempt in case we are not connected at the time we want to
send a message. We remove all of the manual dialling code from the
swap in favor of this behaviour.
Additionally, we make sure to establish a connection as soon as the
EventLoop gets started. In case we ever loose the connection to Alice,
we try to re-establish it.
Decomposing a RequestResponseEvent is quite verbose. We can introduce
a helper function that does the matching for us and delegates to
specific `From` implementations for the protocol specific bits.
Previously, the user neither knew the price nor the maximum quantity
they could trade. We now request a quote from the user and display
it to them.
Fixes#255.
This reduces the overall amount of LoC that imports take up in our
codebase by almost 100.
It also makes merge-conflicts less likely because there is less
grouping together of imports that may lead to layout changes which
in turn can cause merge conflicts.
This is essentially functionally equivalent but includes some
cleanups by removing a layer of abstraction: `spot_price::Behaviour`
is now just a type-alias for a request-response behaviour.
Upgrade bitcoin harness dependency to latest commit
Upgrade backoff to fix failing tests. The previous version of backoff had a broken version of the retry function. Upgraded to a newer comit which fixes this problem.
Upgrade hyper to 0.14 as the 0.13 was bringing in tokio 0.2.24
Upgraded bitcoin harness to version that uses tokio 1.0 and reqwest 0.11
Upgrade reqwest to 0.11. Reqwest 0.11 uses tokio 1.0
Upgrade libp2p to 0.34 in preparation for tokio 1.0 upgrade