2
0
mirror of https://github.com/rivo/tview.git synced 2024-11-07 03:20:39 +00:00
tview/util.go

601 lines
19 KiB
Go

package tview
import (
"fmt"
"math"
"regexp"
"strconv"
"strings"
"unicode"
"github.com/gdamore/tcell"
runewidth "github.com/mattn/go-runewidth"
)
// Text alignment within a box.
const (
AlignLeft = iota
AlignCenter
AlignRight
)
// Semigraphical runes.
const (
GraphicsHoriBar = '\u2500'
GraphicsVertBar = '\u2502'
GraphicsTopLeftCorner = '\u250c'
GraphicsTopRightCorner = '\u2510'
GraphicsBottomLeftCorner = '\u2514'
GraphicsBottomRightCorner = '\u2518'
GraphicsLeftT = '\u251c'
GraphicsRightT = '\u2524'
GraphicsTopT = '\u252c'
GraphicsBottomT = '\u2534'
GraphicsCross = '\u253c'
GraphicsDbVertBar = '\u2550'
GraphicsDbHorBar = '\u2551'
GraphicsDbTopLeftCorner = '\u2554'
GraphicsDbTopRightCorner = '\u2557'
GraphicsDbBottomRightCorner = '\u255d'
GraphicsDbBottomLeftCorner = '\u255a'
GraphicsEllipsis = '\u2026'
)
// joints maps combinations of two graphical runes to the rune that results
// when joining the two in the same screen cell. The keys of this map are
// two-rune strings where the value of the first rune is lower than the value
// of the second rune. Identical runes are not contained.
var joints = map[string]rune{
"\u2500\u2502": GraphicsCross,
"\u2500\u250c": GraphicsTopT,
"\u2500\u2510": GraphicsTopT,
"\u2500\u2514": GraphicsBottomT,
"\u2500\u2518": GraphicsBottomT,
"\u2500\u251c": GraphicsCross,
"\u2500\u2524": GraphicsCross,
"\u2500\u252c": GraphicsTopT,
"\u2500\u2534": GraphicsBottomT,
"\u2500\u253c": GraphicsCross,
"\u2502\u250c": GraphicsLeftT,
"\u2502\u2510": GraphicsRightT,
"\u2502\u2514": GraphicsLeftT,
"\u2502\u2518": GraphicsRightT,
"\u2502\u251c": GraphicsLeftT,
"\u2502\u2524": GraphicsRightT,
"\u2502\u252c": GraphicsCross,
"\u2502\u2534": GraphicsCross,
"\u2502\u253c": GraphicsCross,
"\u250c\u2510": GraphicsTopT,
"\u250c\u2514": GraphicsLeftT,
"\u250c\u2518": GraphicsCross,
"\u250c\u251c": GraphicsLeftT,
"\u250c\u2524": GraphicsCross,
"\u250c\u252c": GraphicsTopT,
"\u250c\u2534": GraphicsCross,
"\u250c\u253c": GraphicsCross,
"\u2510\u2514": GraphicsCross,
"\u2510\u2518": GraphicsRightT,
"\u2510\u251c": GraphicsCross,
"\u2510\u2524": GraphicsRightT,
"\u2510\u252c": GraphicsTopT,
"\u2510\u2534": GraphicsCross,
"\u2510\u253c": GraphicsCross,
"\u2514\u2518": GraphicsBottomT,
"\u2514\u251c": GraphicsLeftT,
"\u2514\u2524": GraphicsCross,
"\u2514\u252c": GraphicsCross,
"\u2514\u2534": GraphicsBottomT,
"\u2514\u253c": GraphicsCross,
"\u2518\u251c": GraphicsCross,
"\u2518\u2524": GraphicsRightT,
"\u2518\u252c": GraphicsCross,
"\u2518\u2534": GraphicsBottomT,
"\u2518\u253c": GraphicsCross,
"\u251c\u2524": GraphicsCross,
"\u251c\u252c": GraphicsCross,
"\u251c\u2534": GraphicsCross,
"\u251c\u253c": GraphicsCross,
"\u2524\u252c": GraphicsCross,
"\u2524\u2534": GraphicsCross,
"\u2524\u253c": GraphicsCross,
"\u252c\u2534": GraphicsCross,
"\u252c\u253c": GraphicsCross,
"\u2534\u253c": GraphicsCross,
}
// Common regular expressions.
var (
colorPattern = regexp.MustCompile(`\[([a-zA-Z]+|#[0-9a-zA-Z]{6}|\-)?(:([a-zA-Z]+|#[0-9a-zA-Z]{6}|\-)?(:([lbdru]+|\-)?)?)?\]`)
regionPattern = regexp.MustCompile(`\["([a-zA-Z0-9_,;: \-\.]*)"\]`)
escapePattern = regexp.MustCompile(`\[([a-zA-Z0-9_,;: \-\."#]+)\[(\[*)\]`)
nonEscapePattern = regexp.MustCompile(`(\[[a-zA-Z0-9_,;: \-\."#]+\[*)\]`)
boundaryPattern = regexp.MustCompile("([[:punct:]]\\s*|\\s+)")
spacePattern = regexp.MustCompile(`\s+`)
)
// Positions of substrings in regular expressions.
const (
colorForegroundPos = 1
colorBackgroundPos = 3
colorFlagPos = 5
)
// Predefined InputField acceptance functions.
var (
// InputFieldInteger accepts integers.
InputFieldInteger func(text string, ch rune) bool
// InputFieldFloat accepts floating-point numbers.
InputFieldFloat func(text string, ch rune) bool
// InputFieldMaxLength returns an input field accept handler which accepts
// input strings up to a given length. Use it like this:
//
// inputField.SetAcceptanceFunc(InputFieldMaxLength(10)) // Accept up to 10 characters.
InputFieldMaxLength func(maxLength int) func(text string, ch rune) bool
)
// Package initialization.
func init() {
// Initialize the predefined input field handlers.
InputFieldInteger = func(text string, ch rune) bool {
if text == "-" {
return true
}
_, err := strconv.Atoi(text)
return err == nil
}
InputFieldFloat = func(text string, ch rune) bool {
if text == "-" || text == "." || text == "-." {
return true
}
_, err := strconv.ParseFloat(text, 64)
return err == nil
}
InputFieldMaxLength = func(maxLength int) func(text string, ch rune) bool {
return func(text string, ch rune) bool {
return len([]rune(text)) <= maxLength
}
}
}
// styleFromTag takes the given style, defined by a foreground color (fgColor),
// a background color (bgColor), and style attributes, and modifies it based on
// the substrings (tagSubstrings) extracted by the regular expression for color
// tags. The new colors and attributes are returned where empty strings mean
// "don't modify" and a dash ("-") means "reset to default".
func styleFromTag(fgColor, bgColor, attributes string, tagSubstrings []string) (newFgColor, newBgColor, newAttributes string) {
if tagSubstrings[colorForegroundPos] != "" {
color := tagSubstrings[colorForegroundPos]
if color == "-" {
fgColor = "-"
} else if color != "" {
fgColor = color
}
}
if tagSubstrings[colorBackgroundPos-1] != "" {
color := tagSubstrings[colorBackgroundPos]
if color == "-" {
bgColor = "-"
} else if color != "" {
bgColor = color
}
}
if tagSubstrings[colorFlagPos-1] != "" {
flags := tagSubstrings[colorFlagPos]
if flags == "-" {
attributes = "-"
} else if flags != "" {
attributes = flags
}
}
return fgColor, bgColor, attributes
}
// overlayStyle mixes a background color with a foreground color (fgColor),
// a (possibly new) background color (bgColor), and style attributes, and
// returns the resulting style. For a definition of the colors and attributes,
// see styleFromTag(). Reset instructions cause the corresponding part of the
// default style to be used.
func overlayStyle(background tcell.Color, defaultStyle tcell.Style, fgColor, bgColor, attributes string) tcell.Style {
defFg, defBg, defAttr := defaultStyle.Decompose()
style := defaultStyle.Background(background)
if fgColor == "-" {
style = style.Foreground(defFg)
} else if fgColor != "" {
style = style.Foreground(tcell.GetColor(fgColor))
}
if bgColor == "-" {
style = style.Background(defBg)
} else if bgColor != "" {
style = style.Background(tcell.GetColor(bgColor))
}
if attributes == "-" {
style = style.Bold(defAttr&tcell.AttrBold > 0)
style = style.Blink(defAttr&tcell.AttrBlink > 0)
style = style.Reverse(defAttr&tcell.AttrReverse > 0)
style = style.Underline(defAttr&tcell.AttrUnderline > 0)
style = style.Dim(defAttr&tcell.AttrDim > 0)
} else if attributes != "" {
style = style.Normal()
for _, flag := range attributes {
switch flag {
case 'l':
style = style.Blink(true)
case 'b':
style = style.Bold(true)
case 'd':
style = style.Dim(true)
case 'r':
style = style.Reverse(true)
case 'u':
style = style.Underline(true)
}
}
}
return style
}
// decomposeString returns information about a string which may contain color
// tags. It returns the indices of the color tags (as returned by
// re.FindAllStringIndex()), the color tags themselves (as returned by
// re.FindAllStringSubmatch()), the indices of an escaped tags, the string
// stripped by any color tags and escaped, and the screen width of the stripped
// string.
func decomposeString(text string) (colorIndices [][]int, colors [][]string, escapeIndices [][]int, stripped string, width int) {
// Get positions of color and escape tags.
colorIndices = colorPattern.FindAllStringIndex(text, -1)
colors = colorPattern.FindAllStringSubmatch(text, -1)
escapeIndices = escapePattern.FindAllStringIndex(text, -1)
// Because the color pattern detects empty tags, we need to filter them out.
for i := len(colorIndices) - 1; i >= 0; i-- {
if colorIndices[i][1]-colorIndices[i][0] == 2 {
colorIndices = append(colorIndices[:i], colorIndices[i+1:]...)
colors = append(colors[:i], colors[i+1:]...)
}
}
// Remove the color tags from the original string.
var from int
buf := make([]byte, 0, len(text))
for _, indices := range colorIndices {
buf = append(buf, []byte(text[from:indices[0]])...)
from = indices[1]
}
buf = append(buf, text[from:]...)
// Escape string.
stripped = string(escapePattern.ReplaceAll(buf, []byte("[$1$2]")))
// Get the width of the stripped string.
width = runewidth.StringWidth(stripped)
return
}
// Print prints text onto the screen into the given box at (x,y,maxWidth,1),
// not exceeding that box. "align" is one of AlignLeft, AlignCenter, or
// AlignRight. The screen's background color will not be changed.
//
// You can change the colors and text styles mid-text by inserting a color tag.
// See the package description for details.
//
// Returns the number of actual runes printed (not including color tags) and the
// actual width used for the printed runes.
func Print(screen tcell.Screen, text string, x, y, maxWidth, align int, color tcell.Color) (int, int) {
return printWithStyle(screen, text, x, y, maxWidth, align, tcell.StyleDefault.Foreground(color))
}
// printWithStyle works like Print() but it takes a style instead of just a
// foreground color.
func printWithStyle(screen tcell.Screen, text string, x, y, maxWidth, align int, style tcell.Style) (int, int) {
if maxWidth < 0 {
return 0, 0
}
// Decompose the text.
colorIndices, colors, escapeIndices, strippedText, _ := decomposeString(text)
// We deal with runes, not with bytes.
runes := []rune(strippedText)
// This helper function takes positions for a substring of "runes" and returns
// a new string corresponding to this substring, making sure printing that
// substring will observe color tags.
substring := func(from, to int) string {
var (
colorPos, escapePos, runePos, startPos int
foregroundColor, backgroundColor, attributes string
)
for pos := range text {
// Handle color tags.
if colorPos < len(colorIndices) && pos >= colorIndices[colorPos][0] && pos < colorIndices[colorPos][1] {
if pos == colorIndices[colorPos][1]-1 {
if runePos <= from {
foregroundColor, backgroundColor, attributes = styleFromTag(foregroundColor, backgroundColor, attributes, colors[colorPos])
}
colorPos++
}
continue
}
// Handle escape tags.
if escapePos < len(escapeIndices) && pos >= escapeIndices[escapePos][0] && pos < escapeIndices[escapePos][1] {
if pos == escapeIndices[escapePos][1]-1 {
escapePos++
} else if pos == escapeIndices[escapePos][1]-2 {
continue
}
}
// Check boundaries.
if runePos == from {
startPos = pos
} else if runePos >= to {
return fmt.Sprintf(`[%s:%s:%s]%s`, foregroundColor, backgroundColor, attributes, text[startPos:pos])
}
runePos++
}
return fmt.Sprintf(`[%s:%s:%s]%s`, foregroundColor, backgroundColor, attributes, text[startPos:])
}
// We want to reduce everything to AlignLeft.
if align == AlignRight {
width := 0
start := len(runes)
for index := start - 1; index >= 0; index-- {
w := runewidth.RuneWidth(runes[index])
if width+w > maxWidth {
break
}
width += w
start = index
}
return printWithStyle(screen, substring(start, len(runes)), x+maxWidth-width, y, width, AlignLeft, style)
} else if align == AlignCenter {
width := runewidth.StringWidth(strippedText)
if width == maxWidth {
// Use the exact space.
return printWithStyle(screen, text, x, y, maxWidth, AlignLeft, style)
} else if width < maxWidth {
// We have more space than we need.
half := (maxWidth - width) / 2
return printWithStyle(screen, text, x+half, y, maxWidth-half, AlignLeft, style)
} else {
// Chop off runes until we have a perfect fit.
var choppedLeft, choppedRight, leftIndex, rightIndex int
rightIndex = len(runes) - 1
for rightIndex > leftIndex && width-choppedLeft-choppedRight > maxWidth {
leftWidth := runewidth.RuneWidth(runes[leftIndex])
rightWidth := runewidth.RuneWidth(runes[rightIndex])
if choppedLeft < choppedRight {
choppedLeft += leftWidth
leftIndex++
} else {
choppedRight += rightWidth
rightIndex--
}
}
return printWithStyle(screen, substring(leftIndex, rightIndex), x, y, maxWidth, AlignLeft, style)
}
}
// Draw text.
drawn := 0
drawnWidth := 0
var (
colorPos, escapePos int
foregroundColor, backgroundColor, attributes string
)
for pos, ch := range text {
// Handle color tags.
if colorPos < len(colorIndices) && pos >= colorIndices[colorPos][0] && pos < colorIndices[colorPos][1] {
if pos == colorIndices[colorPos][1]-1 {
foregroundColor, backgroundColor, attributes = styleFromTag(foregroundColor, backgroundColor, attributes, colors[colorPos])
colorPos++
}
continue
}
// Handle escape tags.
if escapePos < len(escapeIndices) && pos >= escapeIndices[escapePos][0] && pos < escapeIndices[escapePos][1] {
if pos == escapeIndices[escapePos][1]-1 {
escapePos++
} else if pos == escapeIndices[escapePos][1]-2 {
continue
}
}
// Check if we have enough space for this rune.
chWidth := runewidth.RuneWidth(ch)
if drawnWidth+chWidth > maxWidth {
break
}
finalX := x + drawnWidth
// Print the rune.
_, _, finalStyle, _ := screen.GetContent(finalX, y)
_, background, _ := finalStyle.Decompose()
finalStyle = overlayStyle(background, style, foregroundColor, backgroundColor, attributes)
for offset := 0; offset < chWidth; offset++ {
// To avoid undesired effects, we place the same character in all cells.
screen.SetContent(finalX+offset, y, ch, nil, finalStyle)
}
drawn++
drawnWidth += chWidth
}
return drawn, drawnWidth
}
// PrintSimple prints white text to the screen at the given position.
func PrintSimple(screen tcell.Screen, text string, x, y int) {
Print(screen, text, x, y, math.MaxInt32, AlignLeft, Styles.PrimaryTextColor)
}
// StringWidth returns the width of the given string needed to print it on
// screen. The text may contain color tags which are not counted.
func StringWidth(text string) int {
_, _, _, _, width := decomposeString(text)
return width
}
// WordWrap splits a text such that each resulting line does not exceed the
// given screen width. Possible split points are after any punctuation or
// whitespace. Whitespace after split points will be dropped.
//
// This function considers color tags to have no width.
//
// Text is always split at newline characters ('\n').
func WordWrap(text string, width int) (lines []string) {
colorTagIndices, _, escapeIndices, strippedText, _ := decomposeString(text)
// Find candidate breakpoints.
breakPoints := boundaryPattern.FindAllStringIndex(strippedText, -1)
// This helper function adds a new line to the result slice. The provided
// positions are in stripped index space.
addLine := func(from, to int) {
// Shift indices back to original index space.
var colorTagIndex, escapeIndex int
for colorTagIndex < len(colorTagIndices) && to >= colorTagIndices[colorTagIndex][0] ||
escapeIndex < len(escapeIndices) && to >= escapeIndices[escapeIndex][0] {
past := 0
if colorTagIndex < len(colorTagIndices) {
tagWidth := colorTagIndices[colorTagIndex][1] - colorTagIndices[colorTagIndex][0]
if colorTagIndices[colorTagIndex][0] < from {
from += tagWidth
to += tagWidth
colorTagIndex++
} else if colorTagIndices[colorTagIndex][0] < to {
to += tagWidth
colorTagIndex++
} else {
past++
}
} else {
past++
}
if escapeIndex < len(escapeIndices) {
tagWidth := escapeIndices[escapeIndex][1] - escapeIndices[escapeIndex][0]
if escapeIndices[escapeIndex][0] < from {
from += tagWidth
to += tagWidth
escapeIndex++
} else if escapeIndices[escapeIndex][0] < to {
to += tagWidth
escapeIndex++
} else {
past++
}
} else {
past++
}
if past == 2 {
break // All other indices are beyond the requested string.
}
}
lines = append(lines, text[from:to])
}
// Determine final breakpoints.
var start, lastEnd, newStart, breakPoint int
for {
// What's our candidate string?
var candidate string
if breakPoint < len(breakPoints) {
candidate = text[start:breakPoints[breakPoint][1]]
} else {
candidate = text[start:]
}
candidate = strings.TrimRightFunc(candidate, unicode.IsSpace)
if runewidth.StringWidth(candidate) >= width {
// We're past the available width.
if lastEnd > start {
// Use the previous candidate.
addLine(start, lastEnd)
start = newStart
} else {
// We have no previous candidate. Make a hard break.
var lineWidth int
for index, ch := range text {
if index < start {
continue
}
chWidth := runewidth.RuneWidth(ch)
if lineWidth > 0 && lineWidth+chWidth >= width {
addLine(start, index)
start = index
break
}
lineWidth += chWidth
}
}
} else {
// We haven't hit the right border yet.
if breakPoint >= len(breakPoints) {
// It's the last line. We're done.
if len(candidate) > 0 {
addLine(start, len(strippedText))
}
break
} else {
// We have a new candidate.
lastEnd = start + len(candidate)
newStart = breakPoints[breakPoint][1]
breakPoint++
}
}
}
return
}
// PrintJoinedBorder prints a border graphics rune into the screen at the given
// position with the given color, joining it with any existing border graphics
// rune. Background colors are preserved. At this point, only regular single
// line borders are supported.
func PrintJoinedBorder(screen tcell.Screen, x, y int, ch rune, color tcell.Color) {
previous, _, style, _ := screen.GetContent(x, y)
style = style.Foreground(color)
// What's the resulting rune?
var result rune
if ch == previous {
result = ch
} else {
if ch < previous {
previous, ch = ch, previous
}
result = joints[string(previous)+string(ch)]
}
if result == 0 {
result = ch
}
// We only print something if we have something.
screen.SetContent(x, y, result, nil, style)
}
// Escape escapes the given text such that color and/or region tags are not
// recognized and substituted by the print functions of this package. For
// example, to include a tag-like string in a box title or in a TextView:
//
// box.SetTitle(tview.Escape("[squarebrackets]"))
// fmt.Fprint(textView, tview.Escape(`["quoted"]`))
func Escape(text string) string {
return nonEscapePattern.ReplaceAllString(text, "$1[]")
}