You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tview/image.go

765 lines
25 KiB
Go

package tview
import (
"image"
"math"
"github.com/gdamore/tcell/v2"
)
// Types of dithering applied to images.
const (
DitheringNone = iota // No dithering.
DitheringFloydSteinberg // Floyd-Steinberg dithering (the default).
)
// The number of colors supported by true color terminals (R*G*B = 256*256*256).
const TrueColor = 16777216
// This map describes what each block element looks like. A 1 bit represents a
// pixel that is drawn, a 0 bit represents a pixel that is not drawn. The least
// significant bit is the top left pixel, the most significant bit is the bottom
// right pixel, moving row by row from left to right, top to bottom.
var blockElements = map[rune]uint64{
BlockLowerOneEighthBlock: 0b1111111100000000000000000000000000000000000000000000000000000000,
BlockLowerOneQuarterBlock: 0b1111111111111111000000000000000000000000000000000000000000000000,
BlockLowerThreeEighthsBlock: 0b1111111111111111111111110000000000000000000000000000000000000000,
BlockLowerHalfBlock: 0b1111111111111111111111111111111100000000000000000000000000000000,
BlockLowerFiveEighthsBlock: 0b1111111111111111111111111111111111111111000000000000000000000000,
BlockLowerThreeQuartersBlock: 0b1111111111111111111111111111111111111111111111110000000000000000,
BlockLowerSevenEighthsBlock: 0b1111111111111111111111111111111111111111111111111111111100000000,
BlockLeftSevenEighthsBlock: 0b0111111101111111011111110111111101111111011111110111111101111111,
BlockLeftThreeQuartersBlock: 0b0011111100111111001111110011111100111111001111110011111100111111,
BlockLeftFiveEighthsBlock: 0b0001111100011111000111110001111100011111000111110001111100011111,
BlockLeftHalfBlock: 0b0000111100001111000011110000111100001111000011110000111100001111,
BlockLeftThreeEighthsBlock: 0b0000011100000111000001110000011100000111000001110000011100000111,
BlockLeftOneQuarterBlock: 0b0000001100000011000000110000001100000011000000110000001100000011,
BlockLeftOneEighthBlock: 0b0000000100000001000000010000000100000001000000010000000100000001,
BlockQuadrantLowerLeft: 0b0000111100001111000011110000111100000000000000000000000000000000,
BlockQuadrantLowerRight: 0b1111000011110000111100001111000000000000000000000000000000000000,
BlockQuadrantUpperLeft: 0b0000000000000000000000000000000000001111000011110000111100001111,
BlockQuadrantUpperRight: 0b0000000000000000000000000000000011110000111100001111000011110000,
BlockQuadrantUpperLeftAndLowerRight: 0b1111000011110000111100001111000000001111000011110000111100001111,
}
// pixel represents a character on screen used to draw part of an image.
type pixel struct {
style tcell.Style
element rune // The block element.
}
// Image implements a widget that displays one image. The original image
// (specified with [Image.SetImage]) is resized according to the specified size
// (see [Image.SetSize]), using the specified number of colors (see
// [Image.SetColors]), while applying dithering if necessary (see
// [Image.SetDithering]).
//
// Images are approximated by graphical characters in the terminal. The
// resolution is therefore limited by the number and type of characters that can
// be drawn in the terminal and the colors available in the terminal. The
// quality of the final image also depends on the terminal's font and spacing
// settings, none of which are under the control of this package. Results may
// vary.
type Image struct {
*Box
// The image to be displayed. If nil, the widget will be empty.
image image.Image
// The size of the image. If a value is 0, the corresponding size is chosen
// automatically based on the other size while preserving the image's aspect
// ratio. If both are 0, the image uses as much space as possible. A
// negative value represents a percentage, e.g. -50 means 50% of the
// available space.
width, height int
// The number of colors to use. If 0, the number of colors is chosen based
// on the terminal's capabilities.
colors int
// The dithering algorithm to use, one of the constants starting with
// "ImageDithering".
dithering int
// The width of a terminal's cell divided by its height.
aspectRatio float64
// Horizontal and vertical alignment, one of the "Align" constants.
alignHorizontal, alignVertical int
// The text to be displayed before the image.
label string
// The label style.
labelStyle tcell.Style
// The screen width of the label area. A value of 0 means use the width of
// the label text.
labelWidth int
// The actual image size (in cells) when it was drawn the last time.
lastWidth, lastHeight int
// The actual image (in cells) when it was drawn the last time. The size of
// this slice is lastWidth * lastHeight, indexed by y*lastWidth + x.
pixels []pixel
// A callback function set by the Form class and called when the user leaves
// this form item.
finished func(tcell.Key)
}
// NewImage returns a new image widget with an empty image (use [Image.SetImage]
// to specify the image to be displayed). The image will use the widget's entire
// available space. The dithering algorithm is set to Floyd-Steinberg dithering.
// The terminal's cell aspect ratio defaults to 0.5.
func NewImage() *Image {
return &Image{
Box: NewBox(),
dithering: DitheringFloydSteinberg,
aspectRatio: 0.5,
alignHorizontal: AlignCenter,
alignVertical: AlignCenter,
}
}
// SetImage sets the image to be displayed. If nil, the widget will be empty.
func (i *Image) SetImage(image image.Image) *Image {
i.image = image
i.lastWidth, i.lastHeight = 0, 0
return i
}
// SetSize sets the size of the image. Positive values refer to cells in the
// terminal. Negative values refer to a percentage of the available space (e.g.
// -50 means 50%). A value of 0 means that the corresponding size is chosen
// automatically based on the other size while preserving the image's aspect
// ratio. If both are 0, the image uses as much space as possible while still
// preserving the aspect ratio.
func (i *Image) SetSize(rows, columns int) *Image {
i.width = columns
i.height = rows
return i
}
// SetColors sets the number of colors to use. This should be the number of
// colors supported by the terminal. If 0, the number of colors is chosen based
// on the TERM environment variable (which may or may not be reliable).
//
// Only the values 0, 2, 8, 256, and 16777216 ([TrueColor]) are supported. Other
// values will be rounded up to the next supported value, to a maximum of
// 16777216.
//
// The effect of using more colors than supported by the terminal is undefined.
func (i *Image) SetColors(colors int) *Image {
i.colors = colors
i.lastWidth, i.lastHeight = 0, 0
return i
}
// GetColors returns the number of colors that will be used while drawing the
// image. This is one of the values listed in [Image.SetColors], except 0 which
// will be replaced by the actual number of colors used.
func (i *Image) GetColors() int {
switch {
case i.colors == 0:
return availableColors
case i.colors <= 2:
return 2
case i.colors <= 8:
return 8
case i.colors <= 256:
return 256
}
return TrueColor
}
// SetDithering sets the dithering algorithm to use, one of the constants
// starting with "Dithering", for example [DitheringFloydSteinberg] (the
// default). Dithering is not applied when rendering in true-color.
func (i *Image) SetDithering(dithering int) *Image {
i.dithering = dithering
i.lastWidth, i.lastHeight = 0, 0
return i
}
// SetAspectRatio sets the width of a terminal's cell divided by its height.
// You may change the default of 0.5 if your terminal / font has a different
// aspect ratio. This is used to calculate the size of the image if the
// specified width or height is 0. The function will panic if the aspect ratio
// is 0 or less.
func (i *Image) SetAspectRatio(aspectRatio float64) *Image {
if aspectRatio <= 0 {
panic("aspect ratio must be greater than 0")
}
i.aspectRatio = aspectRatio
i.lastWidth, i.lastHeight = 0, 0
return i
}
// SetAlign sets the vertical and horizontal alignment of the image within the
// widget's space. The possible values are [AlignTop], [AlignCenter], and
// [AlignBottom] for vertical alignment and [AlignLeft], [AlignCenter], and
// [AlignRight] for horizontal alignment. The default is [AlignCenter] for both
// (or [AlignTop] and [AlignLeft] if the image is part of a [Form]).
func (i *Image) SetAlign(vertical, horizontal int) *Image {
i.alignHorizontal = horizontal
i.alignVertical = vertical
return i
}
// SetLabel sets the text to be displayed before the image.
func (i *Image) SetLabel(label string) *Image {
i.label = label
return i
}
// GetLabel returns the text to be displayed before the image.
func (i *Image) GetLabel() string {
return i.label
}
// SetLabelWidth sets the screen width of the label. A value of 0 will cause the
// primitive to use the width of the label string.
func (i *Image) SetLabelWidth(width int) *Image {
i.labelWidth = width
return i
}
// GetFieldWidth returns this primitive's field width. This is the image's width
// or, if the width is 0 or less, the proportional width of the image based on
// its height as returned by [Image.GetFieldHeight]. If there is no image, 0 is
// returned.
func (i *Image) GetFieldWidth() int {
if i.width <= 0 {
if i.image == nil {
return 0
}
bounds := i.image.Bounds()
height := i.GetFieldHeight()
return bounds.Dx() * height / bounds.Dy()
}
return i.width
}
// GetFieldHeight returns this primitive's field height. This is the image's
// height or 8 if the height is 0 or less.
func (i *Image) GetFieldHeight() int {
if i.height <= 0 {
return 8
}
return i.height
}
// SetDisabled sets whether or not the item is disabled / read-only.
func (i *Image) SetDisabled(disabled bool) FormItem {
return i // Images are always read-only.
}
// SetFormAttributes sets attributes shared by all form items.
func (i *Image) SetFormAttributes(labelWidth int, labelColor, bgColor, fieldTextColor, fieldBgColor tcell.Color) FormItem {
i.labelWidth = labelWidth
i.backgroundColor = bgColor
i.SetLabelStyle(tcell.StyleDefault.Foreground(labelColor).Background(bgColor))
i.lastWidth, i.lastHeight = 0, 0
return i
}
// SetLabelStyle sets the style of the label.
func (i *Image) SetLabelStyle(style tcell.Style) *Image {
i.labelStyle = style
return i
}
// GetLabelStyle returns the style of the label.
func (i *Image) GetLabelStyle() tcell.Style {
return i.labelStyle
}
// SetFinishedFunc sets a callback invoked when the user leaves this form item.
func (i *Image) SetFinishedFunc(handler func(key tcell.Key)) FormItem {
i.finished = handler
return i
}
// Focus is called when this primitive receives focus.
func (i *Image) Focus(delegate func(p Primitive)) {
// If we're part of a form, there's nothing the user can do here so we're
// finished.
if i.finished != nil {
i.finished(-1)
return
}
i.Box.Focus(delegate)
}
// render re-populates the [Image.pixels] slice based on the current settings,
// if [Image.lastWidth] and [Image.lastHeight] don't match the current image's
// size. It also sets the new image size in these two variables.
func (i *Image) render() {
// If there is no image, there are no pixels.
if i.image == nil {
i.pixels = nil
return
}
// Calculate the new (terminal-space) image size.
bounds := i.image.Bounds()
imageWidth, imageHeight := bounds.Dx(), bounds.Dy()
if i.aspectRatio != 1.0 {
imageWidth = int(float64(imageWidth) / i.aspectRatio)
}
width, height := i.width, i.height
_, _, innerWidth, innerHeight := i.GetInnerRect()
if i.labelWidth > 0 {
innerWidth -= i.labelWidth
} else {
innerWidth -= TaggedStringWidth(i.label)
}
if innerWidth <= 0 {
i.pixels = nil
return
}
if width == 0 && height == 0 {
// Use all available space.
width, height = innerWidth, innerHeight
if adjustedWidth := imageWidth * height / imageHeight; adjustedWidth < width {
width = adjustedWidth
} else {
height = imageHeight * width / imageWidth
}
} else {
// Turn percentages into absolute values.
if width < 0 {
width = innerWidth * -width / 100
}
if height < 0 {
height = innerHeight * -height / 100
}
if width == 0 {
// Adjust the width.
width = imageWidth * height / imageHeight
} else if height == 0 {
// Adjust the height.
height = imageHeight * width / imageWidth
}
}
if width <= 0 || height <= 0 {
i.pixels = nil
return
}
// If nothing has changed, we're done.
if i.lastWidth == width && i.lastHeight == height {
return
}
i.lastWidth, i.lastHeight = width, height // This could still be larger than the available space but that's ok for now.
// Generate the initial pixels by resizing the image (8x8 per cell).
pixels := i.resize()
// Turn them into block elements with background/foreground colors.
i.stamp(pixels)
}
// resize resizes the image to the current size and returns the result as a
// slice of pixels. It is assumed that [Image.lastWidth] (w) and
// [Image.lastHeight] (h) are positive, non-zero values, and the slice has a
// size of 64*w*h, with each pixel being represented by 3 float64 values in the
// range of 0-1. The factor of 64 is due to the fact that we calculate 8x8
// pixels per cell.
func (i *Image) resize() [][3]float64 {
// Because most of the time, we will be downsizing the image, we don't even
// attempt to do any fancy interpolation. For each target pixel, we
// calculate a weighted average of the source pixels using their coverage
// area.
bounds := i.image.Bounds()
srcWidth, srcHeight := bounds.Dx(), bounds.Dy()
tgtWidth, tgtHeight := i.lastWidth*8, i.lastHeight*8
coverageWidth, coverageHeight := float64(tgtWidth)/float64(srcWidth), float64(tgtHeight)/float64(srcHeight)
pixels := make([][3]float64, tgtWidth*tgtHeight)
weights := make([]float64, tgtWidth*tgtHeight)
for srcY := bounds.Min.Y; srcY < bounds.Max.Y; srcY++ {
for srcX := bounds.Min.X; srcX < bounds.Max.X; srcX++ {
r32, g32, b32, _ := i.image.At(srcX, srcY).RGBA()
r, g, b := float64(r32)/0xffff, float64(g32)/0xffff, float64(b32)/0xffff
// Iterate over all target pixels. Outer loop is Y.
startY := float64(srcY-bounds.Min.Y) * coverageHeight
endY := startY + coverageHeight
fromY, toY := int(startY), int(endY)
for tgtY := fromY; tgtY <= toY && tgtY < tgtHeight; tgtY++ {
coverageY := 1.0
if tgtY == fromY {
coverageY -= math.Mod(startY, 1.0)
}
if tgtY == toY {
coverageY -= 1.0 - math.Mod(endY, 1.0)
}
// Inner loop is X.
startX := float64(srcX-bounds.Min.X) * coverageWidth
endX := startX + coverageWidth
fromX, toX := int(startX), int(endX)
for tgtX := fromX; tgtX <= toX && tgtX < tgtWidth; tgtX++ {
coverageX := 1.0
if tgtX == fromX {
coverageX -= math.Mod(startX, 1.0)
}
if tgtX == toX {
coverageX -= 1.0 - math.Mod(endX, 1.0)
}
// Add a weighted contribution to the target pixel.
index := tgtY*tgtWidth + tgtX
coverage := coverageX * coverageY
pixels[index][0] += r * coverage
pixels[index][1] += g * coverage
pixels[index][2] += b * coverage
weights[index] += coverage
}
}
}
}
// Normalize the pixels.
for index, weight := range weights {
if weight > 0 {
pixels[index][0] /= weight
pixels[index][1] /= weight
pixels[index][2] /= weight
}
}
return pixels
}
// stamp takes the pixels generated by [Image.resize] and populates the
// [Image.pixels] slice accordingly.
func (i *Image) stamp(resized [][3]float64) {
// For each 8x8 pixel block, we find the best block element to represent it,
// given the available colors.
i.pixels = make([]pixel, i.lastWidth*i.lastHeight)
colors := i.GetColors()
for row := 0; row < i.lastHeight; row++ {
for col := 0; col < i.lastWidth; col++ {
// Calculate an error for each potential block element + color. Keep
// the one with the lowest error.
// Note that the values in "resize" may lie outside [0, 1] due to
// the error distribution during dithering.
minMSE := math.MaxFloat64 // Mean squared error.
var final [64][3]float64 // The final pixel values.
for element, bits := range blockElements {
// Calculate the average color for the pixels covered by the set
// bits and unset bits.
var (
bg, fg [3]float64
setBits float64
bit uint64 = 1
)
for y := 0; y < 8; y++ {
for x := 0; x < 8; x++ {
index := (row*8+y)*i.lastWidth*8 + (col*8 + x)
if bits&bit != 0 {
fg[0] += resized[index][0]
fg[1] += resized[index][1]
fg[2] += resized[index][2]
setBits++
} else {
bg[0] += resized[index][0]
bg[1] += resized[index][1]
bg[2] += resized[index][2]
}
bit <<= 1
}
}
for ch := 0; ch < 3; ch++ {
fg[ch] /= setBits
if fg[ch] < 0 {
fg[ch] = 0
} else if fg[ch] > 1 {
fg[ch] = 1
}
bg[ch] /= 64 - setBits
if bg[ch] < 0 {
bg[ch] = 0
}
if bg[ch] > 1 {
bg[ch] = 1
}
}
// Quantize to the nearest acceptable color.
for _, color := range []*[3]float64{&fg, &bg} {
if colors == 2 {
// Monochrome. The following weights correspond better
// to human perception than the arithmetic mean.
gray := 0.299*color[0] + 0.587*color[1] + 0.114*color[2]
if gray < 0.5 {
*color = [3]float64{0, 0, 0}
} else {
*color = [3]float64{1, 1, 1}
}
} else {
for index, ch := range color {
switch {
case colors == 8:
// Colors vary wildly for each terminal. Expect
// suboptimal results.
if ch < 0.5 {
color[index] = 0
} else {
color[index] = 1
}
case colors == 256:
color[index] = math.Round(ch*6) / 6
}
}
}
}
// Calculate the error (and the final pixel values).
var (
mse float64
values [64][3]float64
valuesIndex int
)
bit = 1
for y := 0; y < 8; y++ {
for x := 0; x < 8; x++ {
if bits&bit != 0 {
values[valuesIndex] = fg
} else {
values[valuesIndex] = bg
}
index := (row*8+y)*i.lastWidth*8 + (col*8 + x)
for ch := 0; ch < 3; ch++ {
err := resized[index][ch] - values[valuesIndex][ch]
mse += err * err
}
bit <<= 1
valuesIndex++
}
}
// Do we have a better match?
if mse < minMSE {
// Yes. Save it.
minMSE = mse
final = values
index := row*i.lastWidth + col
i.pixels[index].element = element
i.pixels[index].style = tcell.StyleDefault.
Foreground(tcell.NewRGBColor(int32(math.Min(255, fg[0]*255)), int32(math.Min(255, fg[1]*255)), int32(math.Min(255, fg[2]*255)))).
Background(tcell.NewRGBColor(int32(math.Min(255, bg[0]*255)), int32(math.Min(255, bg[1]*255)), int32(math.Min(255, bg[2]*255))))
}
}
// Check if there is a shade block which results in a smaller error.
// What's the overall average color?
var avg [3]float64
for y := 0; y < 8; y++ {
for x := 0; x < 8; x++ {
index := (row*8+y)*i.lastWidth*8 + (col*8 + x)
for ch := 0; ch < 3; ch++ {
avg[ch] += resized[index][ch] / 64
}
}
}
for ch := 0; ch < 3; ch++ {
if avg[ch] < 0 {
avg[ch] = 0
} else if avg[ch] > 1 {
avg[ch] = 1
}
}
// Quantize and choose shade element.
element := BlockFullBlock
var fg, bg tcell.Color
shades := []rune{' ', BlockLightShade, BlockMediumShade, BlockDarkShade, BlockFullBlock}
if colors == 2 {
// Monochrome.
gray := 0.299*avg[0] + 0.587*avg[1] + 0.114*avg[2] // See above for details.
shade := int(math.Round(gray * 4))
element = shades[shade]
for ch := 0; ch < 3; ch++ {
avg[ch] = float64(shade) / 4
}
bg = tcell.ColorBlack
fg = tcell.ColorWhite
} else if colors == TrueColor {
// True color.
fg = tcell.NewRGBColor(int32(math.Min(255, avg[0]*255)), int32(math.Min(255, avg[1]*255)), int32(math.Min(255, avg[2]*255)))
bg = fg
} else {
// 8 or 256 colors.
steps := 1.0
if colors == 256 {
steps = 6.0
}
var (
lo, hi, pos [3]float64
shade float64
)
for ch := 0; ch < 3; ch++ {
lo[ch] = math.Floor(avg[ch]*steps) / steps
hi[ch] = math.Ceil(avg[ch]*steps) / steps
if r := hi[ch] - lo[ch]; r > 0 {
pos[ch] = (avg[ch] - lo[ch]) / r
if math.Abs(pos[ch]-0.5) < math.Abs(shade-0.5) {
shade = pos[ch]
}
}
}
shade = math.Round(shade * 4)
element = shades[int(shade)]
shade /= 4
for ch := 0; ch < 3; ch++ { // Find the closest channel value.
best := math.Abs(avg[ch] - (lo[ch] + (hi[ch]-lo[ch])*shade)) // Start shade from lo to hi.
if value := math.Abs(avg[ch] - (hi[ch] - (hi[ch]-lo[ch])*shade)); value < best {
best = value // Swap lo and hi.
lo[ch], hi[ch] = hi[ch], lo[ch]
}
if value := math.Abs(avg[ch] - lo[ch]); value < best {
best = value // Use lo.
hi[ch] = lo[ch]
}
if value := math.Abs(avg[ch] - hi[ch]); value < best {
lo[ch] = hi[ch] // Use hi.
}
avg[ch] = lo[ch] + (hi[ch]-lo[ch])*shade // Quantize.
}
bg = tcell.NewRGBColor(int32(math.Min(255, lo[0]*255)), int32(math.Min(255, lo[1]*255)), int32(math.Min(255, lo[2]*255)))
fg = tcell.NewRGBColor(int32(math.Min(255, hi[0]*255)), int32(math.Min(255, hi[1]*255)), int32(math.Min(255, hi[2]*255)))
}
// Calculate the error (and the final pixel values).
var (
mse float64
values [64][3]float64
valuesIndex int
)
for y := 0; y < 8; y++ {
for x := 0; x < 8; x++ {
index := (row*8+y)*i.lastWidth*8 + (col*8 + x)
for ch := 0; ch < 3; ch++ {
err := resized[index][ch] - avg[ch]
mse += err * err
}
values[valuesIndex] = avg
valuesIndex++
}
}
// Is this shade element better than the block element?
if mse < minMSE {
// Yes. Save it.
final = values
index := row*i.lastWidth + col
i.pixels[index].element = element
i.pixels[index].style = tcell.StyleDefault.Foreground(fg).Background(bg)
}
// Apply dithering.
if colors < TrueColor && i.dithering == DitheringFloydSteinberg {
// The dithering mask determines how the error is distributed.
// Each element has three values: dx, dy, and weight (in 16th).
var mask = [4][3]int{
{1, 0, 7},
{-1, 1, 3},
{0, 1, 5},
{1, 1, 1},
}
// We dither the 8x8 block as a 2x2 block, transferring errors
// to its 2x2 neighbors.
for ch := 0; ch < 3; ch++ {
for y := 0; y < 2; y++ {
for x := 0; x < 2; x++ {
// What's the error for this 4x4 block?
var err float64
for dy := 0; dy < 4; dy++ {
for dx := 0; dx < 4; dx++ {
err += (final[(y*4+dy)*8+(x*4+dx)][ch] - resized[(row*8+(y*4+dy))*i.lastWidth*8+(col*8+(x*4+dx))][ch]) / 16
}
}
// Distribute it to the 2x2 neighbors.
for _, dist := range mask {
for dy := 0; dy < 4; dy++ {
for dx := 0; dx < 4; dx++ {
targetX, targetY := (x+dist[0])*4+dx, (y+dist[1])*4+dy
if targetX < 0 || col*8+targetX >= i.lastWidth*8 || targetY < 0 || row*8+targetY >= i.lastHeight*8 {
continue
}
resized[(row*8+targetY)*i.lastWidth*8+(col*8+targetX)][ch] -= err * float64(dist[2]) / 16
}
}
}
}
}
}
}
}
}
}
// Draw draws this primitive onto the screen.
func (i *Image) Draw(screen tcell.Screen) {
i.DrawForSubclass(screen, i)
// Regenerate image if necessary.
i.render()
// Draw label.
viewX, viewY, viewWidth, viewHeight := i.GetInnerRect()
_, labelBg, _ := i.labelStyle.Decompose()
if i.labelWidth > 0 {
labelWidth := i.labelWidth
if labelWidth > viewWidth {
labelWidth = viewWidth
}
printWithStyle(screen, i.label, viewX, viewY, 0, labelWidth, AlignLeft, i.labelStyle, labelBg == tcell.ColorDefault)
viewX += labelWidth
viewWidth -= labelWidth
} else {
_, _, drawnWidth := printWithStyle(screen, i.label, viewX, viewY, 0, viewWidth, AlignLeft, i.labelStyle, labelBg == tcell.ColorDefault)
viewX += drawnWidth
viewWidth -= drawnWidth
}
// Determine image placement.
x, y, width, height := viewX, viewY, i.lastWidth, i.lastHeight
if i.alignHorizontal == AlignCenter {
x += (viewWidth - width) / 2
} else if i.alignHorizontal == AlignRight {
x += viewWidth - width
}
if i.alignVertical == AlignCenter {
y += (viewHeight - height) / 2
} else if i.alignVertical == AlignBottom {
y += viewHeight - height
}
// Draw the image.
for row := 0; row < height; row++ {
if y+row < viewY || y+row >= viewY+viewHeight {
continue
}
for col := 0; col < width; col++ {
if x+col < viewX || x+col >= viewX+viewWidth {
continue
}
index := row*width + col
screen.SetContent(x+col, y+row, i.pixels[index].element, nil, i.pixels[index].style)
}
}
}