You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tui-rs/src/widgets/mod.rs

185 lines
6.4 KiB
Rust

//! `widgets` is a collection of types that implement [`Widget`] or [`StatefulWidget`] or both.
//!
//! All widgets are implemented using the builder pattern and are consumable objects. They are not
//! meant to be stored but used as *commands* to draw common figures in the UI.
//!
//! The available widgets are:
//! - [`Block`]
//! - [`Tabs`]
//! - [`List`]
//! - [`Table`]
//! - [`Paragraph`]
//! - [`Chart`]
//! - [`BarChart`]
//! - [`Gauge`]
//! - [`Sparkline`]
//! - [`Clear`]
mod barchart;
mod block;
pub mod canvas;
mod chart;
mod clear;
mod gauge;
mod list;
mod paragraph;
mod reflow;
mod sparkline;
mod table;
mod tabs;
pub use self::barchart::BarChart;
pub use self::block::{Block, BorderType};
pub use self::chart::{Axis, Chart, Dataset, GraphType};
pub use self::clear::Clear;
pub use self::gauge::{Gauge, LineGauge};
pub use self::list::{List, ListItem, ListState};
pub use self::paragraph::{Paragraph, Wrap};
pub use self::sparkline::Sparkline;
pub use self::table::{Cell, Row, Table, TableState};
pub use self::tabs::Tabs;
use crate::{buffer::Buffer, layout::Rect};
use bitflags::bitflags;
bitflags! {
/// Bitflags that can be composed to set the visible borders essentially on the block widget.
pub struct Borders: u32 {
/// Show no border (default)
const NONE = 0b0000_0001;
/// Show the top border
const TOP = 0b0000_0010;
/// Show the right border
const RIGHT = 0b0000_0100;
/// Show the bottom border
const BOTTOM = 0b000_1000;
/// Show the left border
const LEFT = 0b0001_0000;
/// Show all borders
const ALL = Self::TOP.bits | Self::RIGHT.bits | Self::BOTTOM.bits | Self::LEFT.bits;
}
}
/// Base requirements for a Widget
pub trait Widget {
/// Draws the current state of the widget in the given buffer. That is the only method required
/// to implement a custom widget.
fn render(self, area: Rect, buf: &mut Buffer);
}
/// A `StatefulWidget` is a widget that can take advantage of some local state to remember things
/// between two draw calls.
///
/// Most widgets can be drawn directly based on the input parameters. However, some features may
/// require some kind of associated state to be implemented.
///
/// For example, the [`List`] widget can highlight the item currently selected. This can be
/// translated in an offset, which is the number of elements to skip in order to have the selected
/// item within the viewport currently allocated to this widget. The widget can therefore only
/// provide the following behavior: whenever the selected item is out of the viewport scroll to a
/// predefined position (making the selected item the last viewable item or the one in the middle
/// for example). Nonetheless, if the widget has access to the last computed offset then it can
/// implement a natural scrolling experience where the last offset is reused until the selected
/// item is out of the viewport.
///
/// ## Examples
///
/// ```rust,no_run
/// # use std::io;
/// # use tui::Terminal;
/// # use tui::backend::{Backend, TestBackend};
/// # use tui::widgets::{Widget, List, ListItem, ListState};
///
/// // Let's say we have some events to display.
/// struct Events {
/// // `items` is the state managed by your application.
/// items: Vec<String>,
/// // `state` is the state that can be modified by the UI. It stores the index of the selected
/// // item as well as the offset computed during the previous draw call (used to implement
/// // natural scrolling).
/// state: ListState
/// }
///
/// impl Events {
/// fn new(items: Vec<String>) -> Events {
/// Events {
/// items,
/// state: ListState::default(),
/// }
/// }
///
/// pub fn set_items(&mut self, items: Vec<String>) {
/// self.items = items;
/// // We reset the state as the associated items have changed. This effectively reset
/// // the selection as well as the stored offset.
/// self.state = ListState::default();
/// }
///
/// // Select the next item. This will not be reflected until the widget is drawn in the
/// // `Terminal::draw` callback using `Frame::render_stateful_widget`.
/// pub fn next(&mut self) {
/// let i = match self.state.selected() {
/// Some(i) => {
/// if i >= self.items.len() - 1 {
/// 0
/// } else {
/// i + 1
/// }
/// }
/// None => 0,
/// };
/// self.state.select(Some(i));
/// }
///
/// // Select the previous item. This will not be reflected until the widget is drawn in the
/// // `Terminal::draw` callback using `Frame::render_stateful_widget`.
/// pub fn previous(&mut self) {
/// let i = match self.state.selected() {
/// Some(i) => {
/// if i == 0 {
/// self.items.len() - 1
/// } else {
/// i - 1
/// }
/// }
/// None => 0,
/// };
/// self.state.select(Some(i));
/// }
///
/// // Unselect the currently selected item if any. The implementation of `ListState` makes
/// // sure that the stored offset is also reset.
/// pub fn unselect(&mut self) {
/// self.state.select(None);
/// }
/// }
///
/// # let backend = TestBackend::new(5, 5);
/// # let mut terminal = Terminal::new(backend).unwrap();
///
/// let mut events = Events::new(vec![
/// String::from("Item 1"),
/// String::from("Item 2")
/// ]);
///
/// loop {
/// terminal.draw(|f| {
/// // The items managed by the application are transformed to something
/// // that is understood by tui.
/// let items: Vec<ListItem>= events.items.iter().map(|i| ListItem::new(i.as_ref())).collect();
/// // The `List` widget is then built with those items.
/// let list = List::new(items);
/// // Finally the widget is rendered using the associated state. `events.state` is
/// // effectively the only thing that we will "remember" from this draw call.
/// f.render_stateful_widget(list, f.size(), &mut events.state);
/// });
///
/// // In response to some input events or an external http request or whatever:
/// events.next();
/// }
/// ```
pub trait StatefulWidget {
type State;
fn render(self, area: Rect, buf: &mut Buffer, state: &mut Self::State);
}