mirror of
https://github.com/patriciogonzalezvivo/thebookofshaders
synced 2024-11-17 21:25:40 +00:00
78 lines
2.3 KiB
GLSL
Executable File
78 lines
2.3 KiB
GLSL
Executable File
// Author: @patriciogv - 2015
|
|
// Title: Cracks
|
|
|
|
#ifdef GL_ES
|
|
precision mediump float;
|
|
#endif
|
|
|
|
uniform vec2 u_resolution;
|
|
uniform float u_time;
|
|
|
|
// Cellular noise ("Worley noise") in 2D in GLSL.
|
|
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
|
|
// This code is released under the conditions of the MIT license.
|
|
// See LICENSE file for details.
|
|
|
|
// Permutation polynomial: (34x^2 + x) mod 289
|
|
vec4 permute(vec4 x) {
|
|
return mod((34.0 * x + 1.0) * x, 289.0);
|
|
}
|
|
|
|
// Cellular noise, returning F1 and F2 in a vec2.
|
|
// Speeded up by using 2x2 search window instead of 3x3,
|
|
// at the expense of some strong pattern artifacts.
|
|
// F2 is often wrong and has sharp discontinuities.
|
|
// If you need a smooth F2, use the slower 3x3 version.
|
|
// F1 is sometimes wrong, too, but OK for most purposes.
|
|
vec2 cellular2x2(vec2 P) {
|
|
#define K 0.142857142857 // 1/7
|
|
#define K2 0.0714285714285 // K/2
|
|
#define jitter 0.8 // jitter 1.0 makes F1 wrong more often
|
|
vec2 Pi = mod(floor(P), 289.0);
|
|
vec2 Pf = fract(P);
|
|
vec4 Pfx = Pf.x + vec4(-0.5, -1.5, -0.5, -1.5);
|
|
vec4 Pfy = Pf.y + vec4(-0.5, -0.5, -1.5, -1.5);
|
|
vec4 p = permute(Pi.x + vec4(0.0, 1.0, 0.0, 1.0));
|
|
p = permute(p + Pi.y + vec4(0.0, 0.0, 1.0, 1.0));
|
|
vec4 ox = mod(p, 7.0)*K+K2;
|
|
vec4 oy = mod(floor(p*K),7.0)*K+K2;
|
|
vec4 dx = Pfx + jitter*ox;
|
|
vec4 dy = Pfy + jitter*oy;
|
|
vec4 d = dx * dx + dy * dy; // d11, d12, d21 and d22, squared
|
|
// Sort out the two smallest distances
|
|
#if 0
|
|
// Cheat and pick only F1
|
|
d.xy = min(d.xy, d.zw);
|
|
d.x = min(d.x, d.y);
|
|
return d.xx; // F1 duplicated, F2 not computed
|
|
#else
|
|
// Do it right and find both F1 and F2
|
|
d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap if smaller
|
|
d.xz = (d.x < d.z) ? d.xz : d.zx;
|
|
d.xw = (d.x < d.w) ? d.xw : d.wx;
|
|
d.y = min(d.y, d.z);
|
|
d.y = min(d.y, d.w);
|
|
return sqrt(d.xy);
|
|
#endif
|
|
}
|
|
|
|
void main(void) {
|
|
vec2 st = gl_FragCoord.xy/u_resolution.xy;
|
|
st = (st-.5)*.75+.5;
|
|
if (u_resolution.y > u_resolution.x ) {
|
|
st.y *= u_resolution.y/u_resolution.x;
|
|
st.y -= (u_resolution.y*.5-u_resolution.x*.5)/u_resolution.x;
|
|
} else {
|
|
st.x *= u_resolution.x/u_resolution.y;
|
|
st.x -= (u_resolution.x*.5-u_resolution.y*.5)/u_resolution.y;
|
|
}
|
|
|
|
vec2 F = cellular2x2(st*20.);
|
|
|
|
vec2 pos = st-.5;
|
|
float a = dot(pos,pos)-u_time*0.1;
|
|
|
|
float n = 1.0-step(abs(sin(a))-.1,.05+(F.x-F.y)*2.) ;
|
|
gl_FragColor = vec4(n, n, n, 1.0);
|
|
}
|