mirror of
https://github.com/patriciogonzalezvivo/thebookofshaders
synced 2024-11-09 19:10:24 +00:00
89 lines
2.8 KiB
GLSL
Executable File
89 lines
2.8 KiB
GLSL
Executable File
// Author: Stefan Gustavson
|
|
// Title: Worley noise 2x2x2
|
|
|
|
#ifdef GL_ES
|
|
precision mediump float;
|
|
#endif
|
|
|
|
uniform vec2 u_resolution;
|
|
uniform float u_time;
|
|
|
|
// Cellular noise ("Worley noise") in 3D in GLSL.
|
|
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
|
|
// This code is released under the conditions of the MIT license.
|
|
// See LICENSE file for details.
|
|
|
|
// Permutation polynomial: (34x^2 + x) mod 289
|
|
vec4 permute(vec4 x) {
|
|
return mod((34.0 * x + 1.0) * x, 289.0);
|
|
}
|
|
vec3 permute(vec3 x) {
|
|
return mod((34.0 * x + 1.0) * x, 289.0);
|
|
}
|
|
|
|
// Cellular noise, returning F1 and F2 in a vec2.
|
|
// Speeded up by using 2x2x2 search window instead of 3x3x3,
|
|
// at the expense of some pattern artifacts.
|
|
// F2 is often wrong and has sharp discontinuities.
|
|
// If you need a good F2, use the slower 3x3x3 version.
|
|
vec2 cellular2x2x2(vec3 P) {
|
|
#define K 0.142857142857 // 1/7
|
|
#define Ko 0.428571428571 // 1/2-K/2
|
|
#define K2 0.020408163265306 // 1/(7*7)
|
|
#define Kz 0.166666666667 // 1/6
|
|
#define Kzo 0.416666666667 // 1/2-1/6*2
|
|
#define jitter 0.8 // smaller jitter gives less errors in F2
|
|
vec3 Pi = mod(floor(P), 289.0);
|
|
vec3 Pf = fract(P);
|
|
vec4 Pfx = Pf.x + vec4(0.0, -1.0, 0.0, -1.0);
|
|
vec4 Pfy = Pf.y + vec4(0.0, 0.0, -1.0, -1.0);
|
|
vec4 p = permute(Pi.x + vec4(0.0, 1.0, 0.0, 1.0));
|
|
p = permute(p + Pi.y + vec4(0.0, 0.0, 1.0, 1.0));
|
|
vec4 p1 = permute(p + Pi.z); // z+0
|
|
vec4 p2 = permute(p + Pi.z + vec4(1.0)); // z+1
|
|
vec4 ox1 = fract(p1*K) - Ko;
|
|
vec4 oy1 = mod(floor(p1*K), 7.0)*K - Ko;
|
|
vec4 oz1 = floor(p1*K2)*Kz - Kzo; // p1 < 289 guaranteed
|
|
vec4 ox2 = fract(p2*K) - Ko;
|
|
vec4 oy2 = mod(floor(p2*K), 7.0)*K - Ko;
|
|
vec4 oz2 = floor(p2*K2)*Kz - Kzo;
|
|
vec4 dx1 = Pfx + jitter*ox1;
|
|
vec4 dy1 = Pfy + jitter*oy1;
|
|
vec4 dz1 = Pf.z + jitter*oz1;
|
|
vec4 dx2 = Pfx + jitter*ox2;
|
|
vec4 dy2 = Pfy + jitter*oy2;
|
|
vec4 dz2 = Pf.z - 1.0 + jitter*oz2;
|
|
vec4 d1 = dx1 * dx1 + dy1 * dy1 + dz1 * dz1; // z+0
|
|
vec4 d2 = dx2 * dx2 + dy2 * dy2 + dz2 * dz2; // z+1
|
|
|
|
// Sort out the two smallest distances (F1, F2)
|
|
#if 0
|
|
// Cheat and sort out only F1
|
|
d1 = min(d1, d2);
|
|
d1.xy = min(d1.xy, d1.wz);
|
|
d1.x = min(d1.x, d1.y);
|
|
return sqrt(d1.xx);
|
|
#else
|
|
// Do it right and sort out both F1 and F2
|
|
vec4 d = min(d1,d2); // F1 is now in d
|
|
d2 = max(d1,d2); // Make sure we keep all candidates for F2
|
|
d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap smallest to d.x
|
|
d.xz = (d.x < d.z) ? d.xz : d.zx;
|
|
d.xw = (d.x < d.w) ? d.xw : d.wx; // F1 is now in d.x
|
|
d.yzw = min(d.yzw, d2.yzw); // F2 now not in d2.yzw
|
|
d.y = min(d.y, d.z); // nor in d.z
|
|
d.y = min(d.y, d.w); // nor in d.w
|
|
d.y = min(d.y, d2.x); // F2 is now in d.y
|
|
return sqrt(d.xy); // F1 and F2
|
|
#endif
|
|
}
|
|
|
|
void main(void) {
|
|
vec2 st = gl_FragCoord.xy/u_resolution.xy;
|
|
|
|
st *= 10.;
|
|
vec2 F = cellular2x2x2(vec3(st,u_time));
|
|
float n = smoothstep(0.4, 0.5, F.x);
|
|
gl_FragColor = vec4(n, n, n, 1.0);
|
|
}
|