thebookofshaders/11/voronoi/2d-cnoise-2x2x2.frag
Patricio Gonzalez Vivo 76342eff7a cel noise subdir
2015-12-02 16:47:52 -05:00

86 lines
2.7 KiB
GLSL
Executable File

#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform float u_time;
// Cellular noise ("Worley noise") in 3D in GLSL.
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
// This code is released under the conditions of the MIT license.
// See LICENSE file for details.
// Permutation polynomial: (34x^2 + x) mod 289
vec4 permute(vec4 x) {
return mod((34.0 * x + 1.0) * x, 289.0);
}
vec3 permute(vec3 x) {
return mod((34.0 * x + 1.0) * x, 289.0);
}
// Cellular noise, returning F1 and F2 in a vec2.
// Speeded up by using 2x2x2 search window instead of 3x3x3,
// at the expense of some pattern artifacts.
// F2 is often wrong and has sharp discontinuities.
// If you need a good F2, use the slower 3x3x3 version.
vec2 cellular2x2x2(vec3 P) {
#define K 0.142857142857 // 1/7
#define Ko 0.428571428571 // 1/2-K/2
#define K2 0.020408163265306 // 1/(7*7)
#define Kz 0.166666666667 // 1/6
#define Kzo 0.416666666667 // 1/2-1/6*2
#define jitter 0.8 // smaller jitter gives less errors in F2
vec3 Pi = mod(floor(P), 289.0);
vec3 Pf = fract(P);
vec4 Pfx = Pf.x + vec4(0.0, -1.0, 0.0, -1.0);
vec4 Pfy = Pf.y + vec4(0.0, 0.0, -1.0, -1.0);
vec4 p = permute(Pi.x + vec4(0.0, 1.0, 0.0, 1.0));
p = permute(p + Pi.y + vec4(0.0, 0.0, 1.0, 1.0));
vec4 p1 = permute(p + Pi.z); // z+0
vec4 p2 = permute(p + Pi.z + vec4(1.0)); // z+1
vec4 ox1 = fract(p1*K) - Ko;
vec4 oy1 = mod(floor(p1*K), 7.0)*K - Ko;
vec4 oz1 = floor(p1*K2)*Kz - Kzo; // p1 < 289 guaranteed
vec4 ox2 = fract(p2*K) - Ko;
vec4 oy2 = mod(floor(p2*K), 7.0)*K - Ko;
vec4 oz2 = floor(p2*K2)*Kz - Kzo;
vec4 dx1 = Pfx + jitter*ox1;
vec4 dy1 = Pfy + jitter*oy1;
vec4 dz1 = Pf.z + jitter*oz1;
vec4 dx2 = Pfx + jitter*ox2;
vec4 dy2 = Pfy + jitter*oy2;
vec4 dz2 = Pf.z - 1.0 + jitter*oz2;
vec4 d1 = dx1 * dx1 + dy1 * dy1 + dz1 * dz1; // z+0
vec4 d2 = dx2 * dx2 + dy2 * dy2 + dz2 * dz2; // z+1
// Sort out the two smallest distances (F1, F2)
#if 0
// Cheat and sort out only F1
d1 = min(d1, d2);
d1.xy = min(d1.xy, d1.wz);
d1.x = min(d1.x, d1.y);
return sqrt(d1.xx);
#else
// Do it right and sort out both F1 and F2
vec4 d = min(d1,d2); // F1 is now in d
d2 = max(d1,d2); // Make sure we keep all candidates for F2
d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap smallest to d.x
d.xz = (d.x < d.z) ? d.xz : d.zx;
d.xw = (d.x < d.w) ? d.xw : d.wx; // F1 is now in d.x
d.yzw = min(d.yzw, d2.yzw); // F2 now not in d2.yzw
d.y = min(d.y, d.z); // nor in d.z
d.y = min(d.y, d.w); // nor in d.w
d.y = min(d.y, d2.x); // F2 is now in d.y
return sqrt(d.xy); // F1 and F2
#endif
}
void main(void) {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st *= 10.;
vec2 F = cellular2x2x2(vec3(st,u_time));
float n = smoothstep(0.4, 0.5, F.x);
gl_FragColor = vec4(n, n, n, 1.0);
}