#ifdef GL_ES precision mediump float; #endif #define PI 3.141592653589793 #define HALF_PI 1.5707963267948966 uniform vec2 u_resolution; uniform vec2 u_mouse; uniform float u_time; // Robert Penner's easing functions in GLSL // https://github.com/stackgl/glsl-easings float linear(float t) { return t; } float exponentialIn(float t) { return t == 0.0 ? t : pow(2.0, 10.0 * (t - 1.0)); } float exponentialOut(float t) { return t == 1.0 ? t : 1.0 - pow(2.0, -10.0 * t); } float exponentialInOut(float t) { return t == 0.0 || t == 1.0 ? t : t < 0.5 ? +0.5 * pow(2.0, (20.0 * t) - 10.0) : -0.5 * pow(2.0, 10.0 - (t * 20.0)) + 1.0; } float sineIn(float t) { return sin((t - 1.0) * HALF_PI) + 1.0; } float sineOut(float t) { return sin(t * HALF_PI); } float sineInOut(float t) { return -0.5 * (cos(PI * t) - 1.0); } float qinticIn(float t) { return pow(t, 5.0); } float qinticOut(float t) { return 1.0 - (pow(t - 1.0, 5.0)); } float qinticInOut(float t) { return t < 0.5 ? +16.0 * pow(t, 5.0) : -0.5 * pow(2.0 * t - 2.0, 5.0) + 1.0; } float quarticIn(float t) { return pow(t, 4.0); } float quarticOut(float t) { return pow(t - 1.0, 3.0) * (1.0 - t) + 1.0; } float quarticInOut(float t) { return t < 0.5 ? +8.0 * pow(t, 4.0) : -8.0 * pow(t - 1.0, 4.0) + 1.0; } float quadraticInOut(float t) { float p = 2.0 * t * t; return t < 0.5 ? p : -p + (4.0 * t) - 1.0; } float quadraticIn(float t) { return t * t; } float quadraticOut(float t) { return -t * (t - 2.0); } float cubicIn(float t) { return t * t * t; } float cubicOut(float t) { float f = t - 1.0; return f * f * f + 1.0; } float cubicInOut(float t) { return t < 0.5 ? 4.0 * t * t * t : 0.5 * pow(2.0 * t - 2.0, 3.0) + 1.0; } float elasticIn(float t) { return sin(13.0 * t * HALF_PI) * pow(2.0, 10.0 * (t - 1.0)); } float elasticOut(float t) { return sin(-13.0 * (t + 1.0) * HALF_PI) * pow(2.0, -10.0 * t) + 1.0; } float elasticInOut(float t) { return t < 0.5 ? 0.5 * sin(+13.0 * HALF_PI * 2.0 * t) * pow(2.0, 10.0 * (2.0 * t - 1.0)) : 0.5 * sin(-13.0 * HALF_PI * ((2.0 * t - 1.0) + 1.0)) * pow(2.0, -10.0 * (2.0 * t - 1.0)) + 1.0; } float circularIn(float t) { return 1.0 - sqrt(1.0 - t * t); } float circularOut(float t) { return sqrt((2.0 - t) * t); } float circularInOut(float t) { return t < 0.5 ? 0.5 * (1.0 - sqrt(1.0 - 4.0 * t * t)) : 0.5 * (sqrt((3.0 - 2.0 * t) * (2.0 * t - 1.0)) + 1.0); } float bounceOut(float t) { const float a = 4.0 / 11.0; const float b = 8.0 / 11.0; const float c = 9.0 / 10.0; const float ca = 4356.0 / 361.0; const float cb = 35442.0 / 1805.0; const float cc = 16061.0 / 1805.0; float t2 = t * t; return t < a ? 7.5625 * t2 : t < b ? 9.075 * t2 - 9.9 * t + 3.4 : t < c ? ca * t2 - cb * t + cc : 10.8 * t * t - 20.52 * t + 10.72; } float bounceIn(float t) { return 1.0 - bounceOut(1.0 - t); } float bounceInOut(float t) { return t < 0.5 ? 0.5 * (1.0 - bounceOut(1.0 - t * 2.0)) : 0.5 * bounceOut(t * 2.0 - 1.0) + 0.5; } float backIn(float t) { return pow(t, 3.0) - t * sin(t * PI); } float backOut(float t) { float f = 1.0 - t; return 1.0 - (pow(f, 3.0) - f * sin(f * PI)); } float backInOut(float t) { float f = t < 0.5 ? 2.0 * t : 1.0 - (2.0 * t - 1.0); float g = pow(f, 3.0) - f * sin(f * PI); return t < 0.5 ? 0.5 * g : 0.5 * (1.0 - g) + 0.5; } void main() { vec3 colorA = vec3(0.149,0.141,0.912); vec3 colorB = vec3(1.000,0.833,0.224); float t = u_time*0.5; float pct = cubicInOut( abs(fract(t)*2.0-1.) ); gl_FragColor = vec4(vec3(mix(colorA, colorB, pct)),1.0); }