// Author @patriciogv - 2015 - patriciogonzalezvivo.com #ifdef GL_OES_standard_derivatives #extension GL_OES_standard_derivatives: enable #endif #ifdef GL_ES precision mediump float; #endif uniform vec2 u_resolution; uniform vec2 u_mouse; uniform float u_time; vec2 skew (vec2 st) { vec2 r = vec2(0.0); r.x = 1.1547*st.x; r.y = st.y+0.5*r.x; return r; } vec3 simplexGrid (vec2 st) { vec3 xyz = vec3(0.0); vec2 p = fract(skew(st)); if (p.x > p.y) { xyz.xy = 1.0-vec2(p.x,p.y-p.x); xyz.z = p.y; } else { xyz.yz = 1.0-vec2(p.x-p.y,p.y); xyz.x = p.x; // xyz.zx = 1.-vec2(p.x-p.y,p.y); // xyz.y = p.x; } return fract(xyz); } // Antialiazed Step function // from http://webstaff.itn.liu.se/~stegu/webglshadertutorial/shadertutorial.html float aastep(float threshold, float value) { #ifdef GL_OES_standard_derivatives float afwidth = 0.7 * length(vec2(dFdx(value), dFdy(value))); return smoothstep(threshold-afwidth, threshold+afwidth, value); #else return step(threshold, value); #endif } vec2 aastep(float threshold, vec2 value) { return vec2(aastep(threshold, value.x), aastep(threshold, value.y)); } vec3 aastep(float threshold, vec3 value) { return vec3(aastep(threshold, value.x), aastep(threshold, value.y), aastep(threshold, value.z)); } float isoGrid(vec2 st, float pct) { vec3 S = simplexGrid(st); S = aastep(pct-.01,1.-S); return S.r + S.g + S.b; } vec2 sphereCoords(vec2 _st, float _scale){ float maxFactor = sin(1.570796327); vec2 uv = vec2(0.0); vec2 xy = 2.0 * _st.xy - 1.0; float d = length(xy); if (d < (2.0-maxFactor)){ d = length(xy * maxFactor); float z = sqrt(1.0 - d * d); float r = atan(d, z) / 3.1415926535 * _scale; float phi = atan(xy.y, xy.x); uv.x = r * cos(phi) + 0.5; uv.y = r * sin(phi) + 0.5; } else { uv = _st.xy; } return uv; } // // Description : Array and textureless GLSL 2D/3D/4D simplex // noise functions. // Author : Ian McEwan, Ashima Arts. // Maintainer : ijm // Lastmod : 20110822 (ijm) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float snoise(vec3 v) { const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 42.0 * dot( m*m, vec4(dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } void main() { vec2 st = gl_FragCoord.xy/u_resolution.xy; st.x *= u_resolution.x/u_resolution.y; vec3 color = vec3(0.0); // Blend black the edge of the sphere float radius = 1.0-length( vec2(0.5)-st )*2.0; // Scale the space to see the grid st = sphereCoords(st, 1.0); float t = u_time*.5; float pct = clamp((snoise(vec3(st*2.,t))*.5+.5)*.8 + abs(sin(dot(st-.5,st-.5)*3.14+t))*.5,0.,1.); // color = vec3(pct); st *= 1.733*20.; color = vec3(1.-isoGrid(st,.1+pct*.9)); color *= step(0.001,radius); gl_FragColor = vec4(color,1.0); }