// Author @patriciogv - 2015 // http://patriciogonzalezvivo.com #ifdef GL_ES precision mediump float; #endif uniform vec2 u_resolution; uniform vec2 u_mouse; uniform float u_time; vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); } float snoise(vec2 v) { const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0 0.366025403784439, // 0.5*(sqrt(3.0)-1.0) -0.577350269189626, // -1.0 + 2.0 * C.x 0.024390243902439); // 1.0 / 41.0 // First corner vec2 i = floor(v + dot(v, C.yy) ); vec2 x0 = v - i + dot(i, C.xx); // Other corners vec2 i1; i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0); vec4 x12 = x0.xyxy + C.xxzz; x12.xy -= i1; // Permutations i = mod289(i); // Avoid truncation effects in permutation vec3 p = permute( permute( i.y + vec3(0.0, i1.y, 1.0 )) + i.x + vec3(0.0, i1.x, 1.0 )); vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0); m = m*m ; m = m*m ; // Gradients: 41 points uniformly over a line, mapped onto a diamond. // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) vec3 x = 2.0 * fract(p * C.www) - 1.0; vec3 h = abs(x) - 0.5; vec3 ox = floor(x + 0.5); vec3 a0 = x - ox; // Normalise gradients implicitly by scaling m // Approximation of: m *= inversesqrt( a0*a0 + h*h ); m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h ); // Compute final noise value at P vec3 g; g.x = a0.x * x0.x + h.x * x0.y; g.yz = a0.yz * x12.xz + h.yz * x12.yw; return 130.0 * dot(m, g); } vec3 nNoise(vec2 st) { vec2 offset = vec2(1.)/u_resolution.xy; float center = snoise(vec2(st.x, st.y)); float topLeft = snoise(vec2(st.x - offset.x, st.y - offset.y)); float left = snoise(vec2(st.x - offset.x, st.y)); float bottomLeft = snoise(vec2(st.x - offset.x, st.y + offset.y)); float top = snoise(vec2(st.x, st.y - offset.y)); float bottom = snoise(vec2(st.x, st.y + offset.y)); float topRight = snoise(vec2(st.x + offset.x, st.y - offset.y)); float right = snoise(vec2(st.x + offset.x, st.y)); float bottomRight= snoise(vec2(st.x + offset.x, st.y + offset.y)); float dX = topRight + 2.0 * right + bottomRight - topLeft - 2.0 * left - bottomLeft; float dY = bottomLeft + 2.0 * bottom + bottomRight - topLeft - 2.0 * top - topRight; return normalize(vec3( dX, dY, 0.01))*.5+.5; } vec2 tile(vec2 _st, float _zoom){ _st *= _zoom; return fract(_st); } float X(vec2 _st, float _width){ float pct0 = smoothstep(_st.x-_width,_st.x,_st.y); pct0 *= 1.-smoothstep(_st.x,_st.x+_width,_st.y); float pct1 = smoothstep(_st.x-_width,_st.x,1.0-_st.y); pct1 *= 1.-smoothstep(_st.x,_st.x+_width,1.0-_st.y); return pct0+pct1; } void main(){ vec2 st = gl_FragCoord.xy/u_resolution.xy; st.x *= u_resolution.x/u_resolution.y; st += nNoise(st*10.).xy*.02*sin(u_time); float grid = 1.0-X(tile(st,10.),0.05); gl_FragColor= vec4(vec3(grid),1.); }