// Author: Stefan Gustavson // Title: Worley noise 2x2x2 #ifdef GL_ES precision mediump float; #endif uniform vec2 u_resolution; uniform float u_time; // Cellular noise ("Worley noise") in 3D in GLSL. // Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved. // This code is released under the conditions of the MIT license. // See LICENSE file for details. // Permutation polynomial: (34x^2 + x) mod 289 vec4 permute(vec4 x) { return mod((34.0 * x + 1.0) * x, 289.0); } vec3 permute(vec3 x) { return mod((34.0 * x + 1.0) * x, 289.0); } // Cellular noise, returning F1 and F2 in a vec2. // Speeded up by using 2x2x2 search window instead of 3x3x3, // at the expense of some pattern artifacts. // F2 is often wrong and has sharp discontinuities. // If you need a good F2, use the slower 3x3x3 version. vec2 cellular2x2x2(vec3 P) { #define K 0.142857142857 // 1/7 #define Ko 0.428571428571 // 1/2-K/2 #define K2 0.020408163265306 // 1/(7*7) #define Kz 0.166666666667 // 1/6 #define Kzo 0.416666666667 // 1/2-1/6*2 #define jitter 0.8 // smaller jitter gives less errors in F2 vec3 Pi = mod(floor(P), 289.0); vec3 Pf = fract(P); vec4 Pfx = Pf.x + vec4(0.0, -1.0, 0.0, -1.0); vec4 Pfy = Pf.y + vec4(0.0, 0.0, -1.0, -1.0); vec4 p = permute(Pi.x + vec4(0.0, 1.0, 0.0, 1.0)); p = permute(p + Pi.y + vec4(0.0, 0.0, 1.0, 1.0)); vec4 p1 = permute(p + Pi.z); // z+0 vec4 p2 = permute(p + Pi.z + vec4(1.0)); // z+1 vec4 ox1 = fract(p1*K) - Ko; vec4 oy1 = mod(floor(p1*K), 7.0)*K - Ko; vec4 oz1 = floor(p1*K2)*Kz - Kzo; // p1 < 289 guaranteed vec4 ox2 = fract(p2*K) - Ko; vec4 oy2 = mod(floor(p2*K), 7.0)*K - Ko; vec4 oz2 = floor(p2*K2)*Kz - Kzo; vec4 dx1 = Pfx + jitter*ox1; vec4 dy1 = Pfy + jitter*oy1; vec4 dz1 = Pf.z + jitter*oz1; vec4 dx2 = Pfx + jitter*ox2; vec4 dy2 = Pfy + jitter*oy2; vec4 dz2 = Pf.z - 1.0 + jitter*oz2; vec4 d1 = dx1 * dx1 + dy1 * dy1 + dz1 * dz1; // z+0 vec4 d2 = dx2 * dx2 + dy2 * dy2 + dz2 * dz2; // z+1 // Sort out the two smallest distances (F1, F2) #if 0 // Cheat and sort out only F1 d1 = min(d1, d2); d1.xy = min(d1.xy, d1.wz); d1.x = min(d1.x, d1.y); return sqrt(d1.xx); #else // Do it right and sort out both F1 and F2 vec4 d = min(d1,d2); // F1 is now in d d2 = max(d1,d2); // Make sure we keep all candidates for F2 d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap smallest to d.x d.xz = (d.x < d.z) ? d.xz : d.zx; d.xw = (d.x < d.w) ? d.xw : d.wx; // F1 is now in d.x d.yzw = min(d.yzw, d2.yzw); // F2 now not in d2.yzw d.y = min(d.y, d.z); // nor in d.z d.y = min(d.y, d.w); // nor in d.w d.y = min(d.y, d2.x); // F2 is now in d.y return sqrt(d.xy); // F1 and F2 #endif } void main(void) { vec2 st = gl_FragCoord.xy/u_resolution.xy; st *= 10.; vec2 F = cellular2x2x2(vec3(st,u_time)); float n = smoothstep(0.4, 0.5, F.x); gl_FragColor = vec4(n, n, n, 1.0); }