// Author: Stefan Gustavson // Title: Worley noise 2x2 #ifdef GL_ES precision mediump float; #endif uniform vec2 u_resolution; uniform float u_time; // Cellular noise ("Worley noise") in 2D in GLSL. // Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved. // This code is released under the conditions of the MIT license. // See LICENSE file for details. // Permutation polynomial: (34x^2 + x) mod 289 vec4 permute(vec4 x) { return mod((34.0 * x + 1.0) * x, 289.0); } // Cellular noise, returning F1 and F2 in a vec2. // Speeded up by using 2x2 search window instead of 3x3, // at the expense of some strong pattern artifacts. // F2 is often wrong and has sharp discontinuities. // If you need a smooth F2, use the slower 3x3 version. // F1 is sometimes wrong, too, but OK for most purposes. vec2 cellular2x2(vec2 P) { #define K 0.142857142857 // 1/7 #define K2 0.0714285714285 // K/2 #define jitter 0.8 // jitter 1.0 makes F1 wrong more often vec2 Pi = mod(floor(P), 289.0); vec2 Pf = fract(P); vec4 Pfx = Pf.x + vec4(-0.5, -1.5, -0.5, -1.5); vec4 Pfy = Pf.y + vec4(-0.5, -0.5, -1.5, -1.5); vec4 p = permute(Pi.x + vec4(0.0, 1.0, 0.0, 1.0)); p = permute(p + Pi.y + vec4(0.0, 0.0, 1.0, 1.0)); vec4 ox = mod(p, 7.0)*K+K2; vec4 oy = mod(floor(p*K),7.0)*K+K2; vec4 dx = Pfx + jitter*ox; vec4 dy = Pfy + jitter*oy; vec4 d = dx * dx + dy * dy; // d11, d12, d21 and d22, squared // Sort out the two smallest distances #if 0 // Cheat and pick only F1 d.xy = min(d.xy, d.zw); d.x = min(d.x, d.y); return d.xx; // F1 duplicated, F2 not computed #else // Do it right and find both F1 and F2 d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap if smaller d.xz = (d.x < d.z) ? d.xz : d.zx; d.xw = (d.x < d.w) ? d.xw : d.wx; d.y = min(d.y, d.z); d.y = min(d.y, d.w); return sqrt(d.xy); #endif } void main(void) { vec2 st = gl_FragCoord.xy/u_resolution.xy; vec2 F = cellular2x2(st*20.+vec2(u_time,0.)); float n = 1.0-1.5*F.x; gl_FragColor = vec4(n, n, n, 1.0); }