separating cellular noise ... and start researching on it

pull/19/head
Patricio Gonzalez Vivo 9 years ago
parent 8b34688057
commit 732cd19583

@ -31,4 +31,5 @@
include($path."/footer.php");
?>
<!-- <li class="navigationBar" onclick="nextPage()">Next &gt; &gt;</li> -->

@ -28,8 +28,11 @@ float noise (in vec2 st) {
float c = random(i + vec2(0.0, 1.0));
float d = random(i + vec2(1.0, 1.0));
// Smooth interpolation
vec2 u = smoothstep(0.,1.,f);
// Smooth Interpolation
// Cubic Hermine Curve. Same as SmoothStep()
vec2 u = f*f*(3.0-2.0*f);
// u = smoothstep(0.,1.,f);
// Mix 4 coorners porcentages
return mix(a, b, u.x) +

@ -85,11 +85,14 @@ float snoise(vec2 v) {
void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st.x *= u_resolution.x/u_resolution.y;
vec3 color = vec3(0.0);
vec2 pos = vec2(st*10.);
// Scale the space in order to see the function
st *= 10.;
color = vec3(snoise(pos)*.5+.5);
color = vec3(snoise(st)*.5+.5);
gl_FragColor = vec4(color,1.0);
}

@ -119,7 +119,7 @@ As a painter that understand how the pigments of their paint works, the more we
For example, if we use a two dimensional noise implementation to rotate the "grid" we can produce the following effect that looks a lot like wood
<a href="../edit.html#11/wood.frag"><canvas id="custom" class="canvas" data-fragment-url="wood.frag" width="520px" height="200px"></canvas></a>
[ ![Wood texture](wood.png) ](../edit.html#11/wood.frag)
```glsl
pos = rotate2d( noise(pos) ) * pos; // rotate the space
@ -128,7 +128,7 @@ For example, if we use a two dimensional noise implementation to rotate the "gri
Another way to get interesting patterns from noise is to treat it like a distance field and apply some of the tricks described on the [Shapes chapter](../07/)
<a href="../edit.html#11/splatter.frag"><canvas id="custom" class="canvas" data-fragment-url="splatter.frag" width="520px" height="200px"></canvas></a>
[ ![Splatter texture](splatter.png) ](../edit.html#11/splatter.frag)
```glsl
color += smoothstep(.15,.2,noise(st*10.)); // Black splatter
@ -170,24 +170,33 @@ How the simplex grid works? In another brillant and elegant move, simplex grid c
![](simplex-grid-02.png)
Then, as [Stefan Gustavson describe in this paper](http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf): _"...by looking at the integer parts of the transformed coordinates (x,y) for the point we want to evaluate, we can quickly determine which cell of two simplices that contain the point. By also compareing the magnitudes of x and y, we can determine whether the points is in the upper or the lower simplex, and traverse the correct three corners points."_
Then, as [Stefan Gustavson describe in this paper](http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf): _"...by looking at the integer parts of the transformed coordinates (x,y) for the point we want to evaluate, we can quickly determine which cell of two simplices that contain the point. By also compareing the magnitudes of x and y, we can determine whether the points is in the upper or the lower simplex, and traverse the correct three corners points."_. On the following code you can un comment the line 44 to see how the grid is skew and then line 47 to see how a simplex grid can be constructed. Note how on line 22 we are subdiving the skewed squared on two equilateral triangles just buy detecting if ```x > y``` ("lower" triangle) or ```y > x``` ("upper" triangle).
Following is an actual GLSL implementation of this algorithm made by Ian McEwan and Ashima Arts, which is probably over complicated for educational porposes because have been higly optimized.
<div class="codeAndCanvas" data="simplex-grid.frag"></div>
<div class="codeAndCanvas" data="2d-snoise-clear.frag"></div>
Other improvements introduce by Perlin, is the replacement of the Cubic Hermite Curve ( _f(x) = 3x^2-2x^3_ ) for a Quintic Hermite Curve ( _f(x) = 6x^5-15x^4+10x^3_ ). In an efford to keep the "math stuff" simple this makes both ends of the curve more flat and by that a more continuos transition with the next interpolation. You can watch it for your self by uncommenting the second formula on the following graph example (or by see the [two equations side by side here](https://www.desmos.com/calculator/2xvlk5xp8b)). Note how the ends of the curve changes. You can read more about this in [on words of Ken it self in this paper](http://mrl.nyu.edu/~perlin/paper445.pdf).
Now:
<div class="simpleFunction" data="
// Cubic Hermine Curve. Same as SmoothStep()
y = x*x*(3.0-2.0*x);
// Quintic Hermine Curve
//y = x*x*x*(x*(x*6.-15.)+10.);
"></div>
Following is an actual GLSL implementation of this algorithm made by Ian McEwan (and presented in [this paper](http://webstaff.itn.liu.se/~stegu/jgt2012/article.pdf)) which is probably over complicated for educational porposes because have been higly optimized, but you will be happy to click on it and see that is less cryptic than you expect.
* Take a closer look to the implementation and their results. Beside the eficient improvements, what you can say about how it looks?
[ ![Ian McEwan of Ashima Arts - Simplex Noise](simplex-noise.png) ](../edit.html#11/2d-snoise-clear.frag)
Well enought technicalities, is time for you to use this resource in your own expressive way:
* Contemplate how each noise implementation looks. Imagine them as a raw material. Like a marble rock for a sculptor. What you can say about about the "feeling" that each one have? Squinch your eyes to trigger your imagination, like when you want to find shapes on a cloud, What do you see? what reminds you off? How do you imagine each noise implementation could be model into? Following your guts try to make it happen on code.
* Make a shader that project the ilusion of flow. Like a lava lamp, ink drops, watter, etc.
<a href="../edit.html#11/lava-lamp.frag"><canvas id="custom" class="canvas" data-fragment-url="lava-lamp.frag" width="520px" height="200px"></canvas></a>
* Use Signed Noise to add some texture to a work you already made
* Use Signed Noise to add some texture to a work you already made.
<a href="../edit.html#11/iching-02.frag"><canvas id="custom" class="canvas" data-fragment-url="iching-02.frag" width="520px" height="520px"></canvas></a>
Nothing like having some control over the chaos and chances. Right?
Noise is one of those subjects that you can dig and always find new exciting formulas. In fact if you think of it, noise means different things for different people. Musicians will think in audio noise, communicators into interference, and astrophysics on cosmic microwave background. On the next chapter we will use some related concepts from sign and audio behavior to our noise function to explore more uses of noise.
Well in this chapter we have introduce some control over the chaos. Is not an easy job. Becoming a noise bender master takes time and efford. On the following chapters we will review some "well-know" techniques to perfect your skills and get more out of your noise functions to design generative content on shaders.

@ -26,8 +26,10 @@
<ul class="navigationBar" >
<li class="navigationBar" onclick="previusPage()">&lt; &lt; Previous</li>
<li class="navigationBar" onclick="homePage()"> Home </li>
<li class="navigationBar" onclick="nextPage()">Next &gt; &gt;</li>
</ul>';
include($path."/footer.php");
?>
<!-- <li class="navigationBar" onclick="nextPage()">Next &gt; &gt;</li> -->

@ -0,0 +1,50 @@
// Author @patriciogv - 2015 - patriciogonzalezvivo.com
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
vec2 skew (vec2 st) {
vec2 r = vec2(0.0);
r.x = 1.1547*st.x;
r.y = st.y+0.5*r.x;
return r;
}
vec3 simplexGrid (vec2 st) {
vec3 xyz = vec3(0.0);
vec2 p = fract(skew(st));
if (p.x > p.y) {
xyz.xy = 1.0-vec2(p.x,p.y-p.x);
xyz.z = p.y;
} else {
xyz.yz = 1.0-vec2(p.x-p.y,p.y);
xyz.x = p.x;
}
return fract(xyz);
}
void main() {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
vec3 color = vec3(0.0);
// Scale the space to see the grid
st *= 10.;
// Show the 2D grid
color.rg = fract(st);
// Skew the 2D grid
// color.rg = fract(skew(st));
// Subdivide the grid into to equilateral triangles
// color = simplexGrid(st);
gl_FragColor = vec4(color,1.0);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

@ -31,8 +31,11 @@ void main() {
st.x *= u_resolution.x/u_resolution.y;
vec3 color = vec3(0.0);
float t = 1.0;
// Uncomment to animate
// t = abs(1.0-sin(u_time*.1))*5.;
// Comment and uncomment the following lines:
st += noise(st*2.)*abs(1.0-sin(u_time*.1))*5.; // Animate the coordinate space
st += noise(st*2.)*t; // Animate the coordinate space
color = vec3(1.) * smoothstep(.18,.2,noise(st)); // Big black drops
color += smoothstep(.15,.2,noise(st*10.)); // Black splatter
color -= smoothstep(.35,.4,noise(st*10.)); // Holes on splatter

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

@ -0,0 +1,65 @@
// Author @patriciogv - 2015
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform float u_time;
// Cellular noise ("Worley noise") in 2D in GLSL.
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
// This code is released under the conditions of the MIT license.
// See LICENSE file for details.
// Permutation polynomial: (34x^2 + x) mod 289
vec4 permute(vec4 x) {
return mod((34.0 * x + 1.0) * x, 289.0);
}
// Cellular noise, returning F1 and F2 in a vec2.
// Speeded up by using 2x2 search window instead of 3x3,
// at the expense of some strong pattern artifacts.
// F2 is often wrong and has sharp discontinuities.
// If you need a smooth F2, use the slower 3x3 version.
// F1 is sometimes wrong, too, but OK for most purposes.
vec2 cellular2x2(vec2 P) {
#define K 0.142857142857 // 1/7
#define K2 0.0714285714285 // K/2
#define jitter 0.8 // jitter 1.0 makes F1 wrong more often
vec2 Pi = mod(floor(P), 289.0);
vec2 Pf = fract(P);
vec4 Pfx = Pf.x + vec4(-0.5, -1.5, -0.5, -1.5);
vec4 Pfy = Pf.y + vec4(-0.5, -0.5, -1.5, -1.5);
vec4 p = permute(Pi.x + vec4(0.0, 1.0, 0.0, 1.0));
p = permute(p + Pi.y + vec4(0.0, 0.0, 1.0, 1.0));
vec4 ox = mod(p, 7.0)*K+K2;
vec4 oy = mod(floor(p*K),7.0)*K+K2;
vec4 dx = Pfx + jitter*ox;
vec4 dy = Pfy + jitter*oy;
vec4 d = dx * dx + dy * dy; // d11, d12, d21 and d22, squared
// Sort out the two smallest distances
#if 0
// Cheat and pick only F1
d.xy = min(d.xy, d.zw);
d.x = min(d.x, d.y);
return d.xx; // F1 duplicated, F2 not computed
#else
// Do it right and find both F1 and F2
d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap if smaller
d.xz = (d.x < d.z) ? d.xz : d.zx;
d.xw = (d.x < d.w) ? d.xw : d.wx;
d.y = min(d.y, d.z);
d.y = min(d.y, d.w);
return sqrt(d.xy);
#endif
}
void main(void) {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st *= 10.;
vec2 F = cellular2x2(st);
float n = 1.0-1.5*F.x;
gl_FragColor = vec4(n, n, n, 1.0);
}

@ -0,0 +1,88 @@
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform float u_time;
// Cellular noise ("Worley noise") in 3D in GLSL.
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
// This code is released under the conditions of the MIT license.
// See LICENSE file for details.
// Permutation polynomial: (34x^2 + x) mod 289
vec4 permute(vec4 x) {
return mod((34.0 * x + 1.0) * x, 289.0);
}
vec3 permute(vec3 x) {
return mod((34.0 * x + 1.0) * x, 289.0);
}
// Cellular noise, returning F1 and F2 in a vec2.
// Speeded up by using 2x2x2 search window instead of 3x3x3,
// at the expense of some pattern artifacts.
// F2 is often wrong and has sharp discontinuities.
// If you need a good F2, use the slower 3x3x3 version.
vec2 cellular2x2x2(vec3 P) {
#define K 0.142857142857 // 1/7
#define Ko 0.428571428571 // 1/2-K/2
#define K2 0.020408163265306 // 1/(7*7)
#define Kz 0.166666666667 // 1/6
#define Kzo 0.416666666667 // 1/2-1/6*2
#define jitter 0.8 // smaller jitter gives less errors in F2
vec3 Pi = mod(floor(P), 289.0);
vec3 Pf = fract(P);
vec4 Pfx = Pf.x + vec4(0.0, -1.0, 0.0, -1.0);
vec4 Pfy = Pf.y + vec4(0.0, 0.0, -1.0, -1.0);
vec4 p = permute(Pi.x + vec4(0.0, 1.0, 0.0, 1.0));
p = permute(p + Pi.y + vec4(0.0, 0.0, 1.0, 1.0));
vec4 p1 = permute(p + Pi.z); // z+0
vec4 p2 = permute(p + Pi.z + vec4(1.0)); // z+1
vec4 ox1 = fract(p1*K) - Ko;
vec4 oy1 = mod(floor(p1*K), 7.0)*K - Ko;
vec4 oz1 = floor(p1*K2)*Kz - Kzo; // p1 < 289 guaranteed
vec4 ox2 = fract(p2*K) - Ko;
vec4 oy2 = mod(floor(p2*K), 7.0)*K - Ko;
vec4 oz2 = floor(p2*K2)*Kz - Kzo;
vec4 dx1 = Pfx + jitter*ox1;
vec4 dy1 = Pfy + jitter*oy1;
vec4 dz1 = Pf.z + jitter*oz1;
vec4 dx2 = Pfx + jitter*ox2;
vec4 dy2 = Pfy + jitter*oy2;
vec4 dz2 = Pf.z - 1.0 + jitter*oz2;
vec4 d1 = dx1 * dx1 + dy1 * dy1 + dz1 * dz1; // z+0
vec4 d2 = dx2 * dx2 + dy2 * dy2 + dz2 * dz2; // z+1
// Sort out the two smallest distances (F1, F2)
#if 0
// Cheat and sort out only F1
d1 = min(d1, d2);
d1.xy = min(d1.xy, d1.wz);
d1.x = min(d1.x, d1.y);
return sqrt(d1.xx);
#else
// Do it right and sort out both F1 and F2
vec4 d = min(d1,d2); // F1 is now in d
d2 = max(d1,d2); // Make sure we keep all candidates for F2
d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap smallest to d.x
d.xz = (d.x < d.z) ? d.xz : d.zx;
d.xw = (d.x < d.w) ? d.xw : d.wx; // F1 is now in d.x
d.yzw = min(d.yzw, d2.yzw); // F2 now not in d2.yzw
d.y = min(d.y, d.z); // nor in d.z
d.y = min(d.y, d.w); // nor in d.w
d.y = min(d.y, d2.x); // F2 is now in d.y
return sqrt(d.xy); // F1 and F2
#endif
}
varying vec3 vTexCoord3D;
void main(void) {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st *= 10.;
vec2 F = cellular2x2x2(vec3(st,u_time));
float n = smoothstep(0.4, 0.5, F.x);
gl_FragColor = vec4(n, n, n, 1.0);
}

@ -0,0 +1,66 @@
// Author @patriciogv - 2015
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform float u_time;
// Permutation polynomial: (34x^2 + x) mod 289
vec3 permute(vec3 x) {
return mod((34.0 * x + 1.0) * x, 289.0);
}
// Cellular noise, returning F1 and F2 in a vec2.
// Standard 3x3 search window for good F1 and F2 values
vec2 cellular(vec2 P) {
#define K 0.142857142857 // 1/7
#define Ko 0.428571428571 // 3/7
#define jitter 1.0 // Less gives more regular pattern
vec2 Pi = mod(floor(P), 289.0);
vec2 Pf = fract(P);
vec3 oi = vec3(-1.0, 0.0, 1.0);
vec3 of = vec3(-0.5, 0.5, 1.5);
vec3 px = permute(Pi.x + oi);
vec3 p = permute(px.x + Pi.y + oi); // p11, p12, p13
vec3 ox = fract(p*K) - Ko;
vec3 oy = mod(floor(p*K),7.0)*K - Ko;
vec3 dx = Pf.x + 0.5 + jitter*ox;
vec3 dy = Pf.y - of + jitter*oy;
vec3 d1 = dx * dx + dy * dy; // d11, d12 and d13, squared
p = permute(px.y + Pi.y + oi); // p21, p22, p23
ox = fract(p*K) - Ko;
oy = mod(floor(p*K),7.0)*K - Ko;
dx = Pf.x - 0.5 + jitter*ox;
dy = Pf.y - of + jitter*oy;
vec3 d2 = dx * dx + dy * dy; // d21, d22 and d23, squared
p = permute(px.z + Pi.y + oi); // p31, p32, p33
ox = fract(p*K) - Ko;
oy = mod(floor(p*K),7.0)*K - Ko;
dx = Pf.x - 1.5 + jitter*ox;
dy = Pf.y - of + jitter*oy;
vec3 d3 = dx * dx + dy * dy; // d31, d32 and d33, squared
// Sort out the two smallest distances (F1, F2)
vec3 d1a = min(d1, d2);
d2 = max(d1, d2); // Swap to keep candidates for F2
d2 = min(d2, d3); // neither F1 nor F2 are now in d3
d1 = min(d1a, d2); // F1 is now in d1
d2 = max(d1a, d2); // Swap to keep candidates for F2
d1.xy = (d1.x < d1.y) ? d1.xy : d1.yx; // Swap if smaller
d1.xz = (d1.x < d1.z) ? d1.xz : d1.zx; // F1 is in d1.x
d1.yz = min(d1.yz, d2.yz); // F2 is now not in d2.yz
d1.y = min(d1.y, d1.z); // nor in d1.z
d1.y = min(d1.y, d2.x); // F2 is in d1.y, we're done.
return sqrt(d1.xy);
}
void main(void) {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st *= 10.;
vec2 F = cellular(st);
float facets = 0.1+(F.y-F.x);
float dots = smoothstep(0.05, 0.1, F.x);
float n = facets * dots;
gl_FragColor = vec4(n, n, n, 1.0);
}

@ -0,0 +1,193 @@
// Author @patriciogv - 2015
// http://patriciogonzalezvivo.com
#ifdef GL_ES
precision mediump float;
#endif
uniform vec2 u_resolution;
uniform float u_time;
// Cellular noise ("Worley noise") in 3D in GLSL.
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
// This code is released under the conditions of the MIT license.
// See LICENSE file for details.
// Permutation polynomial: (34x^2 + x) mod 289
vec3 permute(vec3 x) {
return mod((34.0 * x + 1.0) * x, 289.0);
}
// Cellular noise, returning F1 and F2 in a vec2.
// 3x3x3 search region for good F2 everywhere, but a lot
// slower than the 2x2x2 version.
// The code below is a bit scary even to its author,
// but it has at least half decent performance on a
// modern GPU. In any case, it beats any software
// implementation of Worley noise hands down.
vec2 cellular(vec3 P) {
#define K 0.142857142857 // 1/7
#define Ko 0.428571428571 // 1/2-K/2
#define K2 0.020408163265306 // 1/(7*7)
#define Kz 0.166666666667 // 1/6
#define Kzo 0.416666666667 // 1/2-1/6*2
#define jitter 1.0 // smaller jitter gives more regular pattern
vec3 Pi = mod(floor(P), 289.0);
vec3 Pf = fract(P) - 0.5;
vec3 Pfx = Pf.x + vec3(1.0, 0.0, -1.0);
vec3 Pfy = Pf.y + vec3(1.0, 0.0, -1.0);
vec3 Pfz = Pf.z + vec3(1.0, 0.0, -1.0);
vec3 p = permute(Pi.x + vec3(-1.0, 0.0, 1.0));
vec3 p1 = permute(p + Pi.y - 1.0);
vec3 p2 = permute(p + Pi.y);
vec3 p3 = permute(p + Pi.y + 1.0);
vec3 p11 = permute(p1 + Pi.z - 1.0);
vec3 p12 = permute(p1 + Pi.z);
vec3 p13 = permute(p1 + Pi.z + 1.0);
vec3 p21 = permute(p2 + Pi.z - 1.0);
vec3 p22 = permute(p2 + Pi.z);
vec3 p23 = permute(p2 + Pi.z + 1.0);
vec3 p31 = permute(p3 + Pi.z - 1.0);
vec3 p32 = permute(p3 + Pi.z);
vec3 p33 = permute(p3 + Pi.z + 1.0);
vec3 ox11 = fract(p11*K) - Ko;
vec3 oy11 = mod(floor(p11*K), 7.0)*K - Ko;
vec3 oz11 = floor(p11*K2)*Kz - Kzo; // p11 < 289 guaranteed
vec3 ox12 = fract(p12*K) - Ko;
vec3 oy12 = mod(floor(p12*K), 7.0)*K - Ko;
vec3 oz12 = floor(p12*K2)*Kz - Kzo;
vec3 ox13 = fract(p13*K) - Ko;
vec3 oy13 = mod(floor(p13*K), 7.0)*K - Ko;
vec3 oz13 = floor(p13*K2)*Kz - Kzo;
vec3 ox21 = fract(p21*K) - Ko;
vec3 oy21 = mod(floor(p21*K), 7.0)*K - Ko;
vec3 oz21 = floor(p21*K2)*Kz - Kzo;
vec3 ox22 = fract(p22*K) - Ko;
vec3 oy22 = mod(floor(p22*K), 7.0)*K - Ko;
vec3 oz22 = floor(p22*K2)*Kz - Kzo;
vec3 ox23 = fract(p23*K) - Ko;
vec3 oy23 = mod(floor(p23*K), 7.0)*K - Ko;
vec3 oz23 = floor(p23*K2)*Kz - Kzo;
vec3 ox31 = fract(p31*K) - Ko;
vec3 oy31 = mod(floor(p31*K), 7.0)*K - Ko;
vec3 oz31 = floor(p31*K2)*Kz - Kzo;
vec3 ox32 = fract(p32*K) - Ko;
vec3 oy32 = mod(floor(p32*K), 7.0)*K - Ko;
vec3 oz32 = floor(p32*K2)*Kz - Kzo;
vec3 ox33 = fract(p33*K) - Ko;
vec3 oy33 = mod(floor(p33*K), 7.0)*K - Ko;
vec3 oz33 = floor(p33*K2)*Kz - Kzo;
vec3 dx11 = Pfx + jitter*ox11;
vec3 dy11 = Pfy.x + jitter*oy11;
vec3 dz11 = Pfz.x + jitter*oz11;
vec3 dx12 = Pfx + jitter*ox12;
vec3 dy12 = Pfy.x + jitter*oy12;
vec3 dz12 = Pfz.y + jitter*oz12;
vec3 dx13 = Pfx + jitter*ox13;
vec3 dy13 = Pfy.x + jitter*oy13;
vec3 dz13 = Pfz.z + jitter*oz13;
vec3 dx21 = Pfx + jitter*ox21;
vec3 dy21 = Pfy.y + jitter*oy21;
vec3 dz21 = Pfz.x + jitter*oz21;
vec3 dx22 = Pfx + jitter*ox22;
vec3 dy22 = Pfy.y + jitter*oy22;
vec3 dz22 = Pfz.y + jitter*oz22;
vec3 dx23 = Pfx + jitter*ox23;
vec3 dy23 = Pfy.y + jitter*oy23;
vec3 dz23 = Pfz.z + jitter*oz23;
vec3 dx31 = Pfx + jitter*ox31;
vec3 dy31 = Pfy.z + jitter*oy31;
vec3 dz31 = Pfz.x + jitter*oz31;
vec3 dx32 = Pfx + jitter*ox32;
vec3 dy32 = Pfy.z + jitter*oy32;
vec3 dz32 = Pfz.y + jitter*oz32;
vec3 dx33 = Pfx + jitter*ox33;
vec3 dy33 = Pfy.z + jitter*oy33;
vec3 dz33 = Pfz.z + jitter*oz33;
vec3 d11 = dx11 * dx11 + dy11 * dy11 + dz11 * dz11;
vec3 d12 = dx12 * dx12 + dy12 * dy12 + dz12 * dz12;
vec3 d13 = dx13 * dx13 + dy13 * dy13 + dz13 * dz13;
vec3 d21 = dx21 * dx21 + dy21 * dy21 + dz21 * dz21;
vec3 d22 = dx22 * dx22 + dy22 * dy22 + dz22 * dz22;
vec3 d23 = dx23 * dx23 + dy23 * dy23 + dz23 * dz23;
vec3 d31 = dx31 * dx31 + dy31 * dy31 + dz31 * dz31;
vec3 d32 = dx32 * dx32 + dy32 * dy32 + dz32 * dz32;
vec3 d33 = dx33 * dx33 + dy33 * dy33 + dz33 * dz33;
// Sort out the two smallest distances (F1, F2)
#if 0
// Cheat and sort out only F1
vec3 d1 = min(min(d11,d12), d13);
vec3 d2 = min(min(d21,d22), d23);
vec3 d3 = min(min(d31,d32), d33);
vec3 d = min(min(d1,d2), d3);
d.x = min(min(d.x,d.y),d.z);
return sqrt(d.xx); // F1 duplicated, no F2 computed
#else
// Do it right and sort out both F1 and F2
vec3 d1a = min(d11, d12);
d12 = max(d11, d12);
d11 = min(d1a, d13); // Smallest now not in d12 or d13
d13 = max(d1a, d13);
d12 = min(d12, d13); // 2nd smallest now not in d13
vec3 d2a = min(d21, d22);
d22 = max(d21, d22);
d21 = min(d2a, d23); // Smallest now not in d22 or d23
d23 = max(d2a, d23);
d22 = min(d22, d23); // 2nd smallest now not in d23
vec3 d3a = min(d31, d32);
d32 = max(d31, d32);
d31 = min(d3a, d33); // Smallest now not in d32 or d33
d33 = max(d3a, d33);
d32 = min(d32, d33); // 2nd smallest now not in d33
vec3 da = min(d11, d21);
d21 = max(d11, d21);
d11 = min(da, d31); // Smallest now in d11
d31 = max(da, d31); // 2nd smallest now not in d31
d11.xy = (d11.x < d11.y) ? d11.xy : d11.yx;
d11.xz = (d11.x < d11.z) ? d11.xz : d11.zx; // d11.x now smallest
d12 = min(d12, d21); // 2nd smallest now not in d21
d12 = min(d12, d22); // nor in d22
d12 = min(d12, d31); // nor in d31
d12 = min(d12, d32); // nor in d32
d11.yz = min(d11.yz,d12.xy); // nor in d12.yz
d11.y = min(d11.y,d12.z); // Only two more to go
d11.y = min(d11.y,d11.z); // Done! (Phew!)
return sqrt(d11.xy); // F1, F2
#endif
}
void main(void) {
vec2 st = gl_FragCoord.xy/u_resolution.xy;
st *= 10.;
vec2 F = cellular(vec3(st,u_time));
float n = F.y-F.x;
gl_FragColor = vec4(n, n, n, 1.0);
}

@ -1,64 +1,8 @@
## Fractal Brownian Motion
At the end of the previous chapter we were thinking about noise and discovering that in fact noise could be interpreted as audio signals. In fact sound can be constructed by the manipulation of the amplitud and frequency of a sine waves.
```glsl
y = amplitud + sin( frequency );
```
An interesting property of waves in general is that they can be add up. The following graph shows what happen if you add sine waves of different frequencies and amplitudes.
<div class="simpleFunction" data="
float t = 0.01*(-u_time*130.0);
y += sin(x*2.1 + t)*4.5;
y += sin(x*1.72 + t*1.121)*4.0;
y += sin(x*2.221 + t*0.437)*5.0;
y += sin(x*3.1122+ t*4.269)*2.5;
y *= 0.1;
"></div>
Think on it as the surface of the ocean. Massive amount of water propagating waves across it surface. Waves of different heights (amplitud) and rhythms (frequencies) bouncing and interfering each other.
Musicians learn long time ago that there are sounds that play well with each other. Those sound, carried by waves of air, vibrate in such a particular way that the resultan sound seams to be bust and enhance. Those sounds are call [harmonics](http://en.wikipedia.org/wiki/Harmonic).
Back to code, we can add harmonics together and see how the resultant looks like. Try the following code on the previous graph.
```glsl
y = 0.;
for( int i = 0; i < 5; ++i) {
y += sin(PI*x*float(i))/float(i);
}
y *= 0.6;
```
As you can see in the above code, on every iteration the frequency increase by the double. By augmenting the number of iterations (chaining the 5 for a 10, a 20 or 50) the wave tends to break into smaller fractions, with more details and sharper fluctuations.
## Fractal Brownian Motion
So we try adding different waves together, and the result was chaotic, we add up harmonic waves and the result was a consistent fractal pattern. We can use the best of both worlds and add up harmonic noise waves to exacerbate a noise pattern.
By adding different octaves of increasing frequencies and decreasing amplitudes of noise we can obtain a bigger level of detail or granularity. This technique is call Fractal Brownian Motion and usually consist on a fractal sum of noise functions.
Take a look to the following example and progressively change the for loop to do 2,3,4,5,6,7 and 8 iterations. See want happens
<div class="simpleFunction" data="
float a = 0.5;
for( int i = 0; i < 1; ++i) {
y += a * noise(x);
x = x * 2.0;
a *= 0.5;
}"></div>
If we apply this one dimensional example to a bidimentional space it will look like the following example:
<div class="codeAndCanvas" data="2d-fbm.frag"></div>
## Using Fractal Brownian Motion
In this [article](http://www.iquilezles.org/www/articles/warp/warp.htm) Iñigo Quilez describe an interesting use of fractal brownian motion constructing patterns by adding successive results of fractal brownian motions.
Take a look to the code and how it looks
<div class="codeAndCanvas" data="clouds.frag"></div>
https://briansharpe.wordpress.com/2011/12/01/optimized-artifact-free-gpu-cellular-noise/
http://www.rhythmiccanvas.com/research/papers/worley.pdf
http://webstaff.itn.liu.se/~stegu/GLSL-cellular/GLSL-cellular-notes.pdf
http://www.iquilezles.org/www/articles/voronoise/voronoise.htm
http://www.iquilezles.org/www/articles/smoothvoronoi/smoothvoronoi.htm
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

@ -1,7 +1,7 @@
<?php
$path = "..";
$subtitle = ": Fractal Brownian Motion";
$subtitle = ": More noise";
$README = "README";
$language = "";

@ -1,27 +1,67 @@
## Fractals
## Fractal Brownian Motion
https://www.shadertoy.com/view/lsX3W4
http://www.iquilezles.org/www/articles/warp/warp.htm
http://www.iquilezles.org/www/articles/morenoise/morenoise.htm
https://www.shadertoy.com/view/Mss3Wf
Noise is one of those subjects that you can dig and always find new exciting formulas. In fact noise tends to means different things for different people. Musicians will think in audio noise, communicators into interference, and astrophysics on cosmic microwave background. In fact noise could be interpreted as audio signals, and noise as well as sound can be constructed by the manipulation of the amplitud and frequency of the waves that compose it.
https://www.shadertoy.com/view/4df3Rn
```glsl
y = amplitud + sin( frequency );
```
https://www.shadertoy.com/view/Mss3R8
An interesting property of waves in general is that they can be add up. The following graph shows what happen if you add sine waves of different frequencies and amplitudes.
https://www.shadertoy.com/view/4dfGRn
<div class="simpleFunction" data="
float t = 0.01*(-u_time*130.0);
y += sin(x*2.1 + t)*4.5;
y += sin(x*1.72 + t*1.121)*4.0;
y += sin(x*2.221 + t*0.437)*5.0;
y += sin(x*3.1122+ t*4.269)*2.5;
y *= 0.1;
"></div>
https://www.shadertoy.com/view/lss3zs
Think on it as the surface of the ocean. Massive amount of water propagating waves across it surface. Waves of different heights (amplitud) and rhythms (frequencies) bouncing and interfering each other.
https://www.shadertoy.com/view/4dXGDX
Musicians learn long time ago that there are sounds that play well with each other. Those sound, carried by waves of air, vibrate in such a particular way that the resultan sound seams to be bust and enhance. Those sounds are call [harmonics](http://en.wikipedia.org/wiki/Harmonic).
https://www.shadertoy.com/view/XsXGz2
Back to code, we can add harmonics together and see how the resultant looks like. Try the following code on the previous graph.
https://www.shadertoy.com/view/lls3D7
```glsl
y = 0.;
for( int i = 0; i < 5; ++i) {
y += sin(PI*x*float(i))/float(i);
}
y *= 0.6;
```
https://www.shadertoy.com/view/XdB3DD
As you can see in the above code, on every iteration the frequency increase by the double. By augmenting the number of iterations (chaining the 5 for a 10, a 20 or 50) the wave tends to break into smaller fractions, with more details and sharper fluctuations.
https://www.shadertoy.com/view/XdBSWw
## Fractal Brownian Motion
So we try adding different waves together, and the result was chaotic, we add up harmonic waves and the result was a consistent fractal pattern. We can use the best of both worlds and add up harmonic noise waves to exacerbate a noise pattern.
By adding different octaves of increasing frequencies and decreasing amplitudes of noise we can obtain a bigger level of detail or granularity. This technique is call Fractal Brownian Motion and usually consist on a fractal sum of noise functions.
Take a look to the following example and progressively change the for loop to do 2,3,4,5,6,7 and 8 iterations. See want happens
<div class="simpleFunction" data="
float a = 0.5;
for( int i = 0; i < 1; ++i) {
y += a * noise(x);
x = x * 2.0;
a *= 0.5;
}"></div>
If we apply this one dimensional example to a bidimentional space it will look like the following example:
<div class="codeAndCanvas" data="2d-fbm.frag"></div>
## Using Fractal Brownian Motion
In this [article](http://www.iquilezles.org/www/articles/warp/warp.htm) Iñigo Quilez describe an interesting use of fractal brownian motion constructing patterns by adding successive results of fractal brownian motions.
Take a look to the code and how it looks
<div class="codeAndCanvas" data="clouds.frag"></div>
https://www.shadertoy.com/view/llfGD2
https://www.shadertoy.com/view/Mlf3RX

@ -1,7 +1,7 @@
<?php
$path = "..";
$subtitle = ": Fractals";
$subtitle = ": Fractal Brownian Motion";
$README = "README";
$language = "";

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 218 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 105 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

@ -1,72 +1,27 @@
# Image processing
## Fractals
## Textures
https://www.shadertoy.com/view/lsX3W4
![](01.jpg)
https://www.shadertoy.com/view/Mss3Wf
Graphic cards (GPUs) have special memory types for images. Usually on CPUs images are stores as arrays of bites but on GPUs store images as ```sampler2D``` which is more like a table (or matrix) of floating point vectors. More interestingly is that the values of this *table* of vectors are continously. That means that value between pixels are interpolated in a low level.
https://www.shadertoy.com/view/4df3Rn
In order to use this feature we first need to *upload* the image from the CPU to the GPU, to then pass the ```id``` of the texture to the right [```uniform```](../05). All that happens outside the shader.
https://www.shadertoy.com/view/Mss3R8
Once the texture is loaded and linked to a valid ```uniform sampler2D``` you can ask for specific color value at specific coordinates (formated on a [```vec2```](index.html#vec2.md) variable) usin the [```texture2D()```](index.html#texture2D.md) function which will return a color formated on a [```vec4```](index.html#vec4.md) variable.
https://www.shadertoy.com/view/4dfGRn
```glsl
vec4 texture2D(sampler2D texture, vec2 coordinates)
```
https://www.shadertoy.com/view/lss3zs
Check the following code where we load Hokusai's Wave (1830) as ```uniform sampler2D u_tex0``` and we call every pixel of it inside the billboard:
https://www.shadertoy.com/view/4dXGDX
<div class="codeAndCanvas" data="texture.frag" data-imgs="hokusai.jpg"></div>
https://www.shadertoy.com/view/XsXGz2
If you pay attention you will note that the coordinates for the texture are normalized! What a surprise right? Textures coordenates are consisten with the rest of the things we had saw and their coordenates are between 0.0 and 1.0 whitch match perfectly with the normalized space coordinates we have been using.
https://www.shadertoy.com/view/lls3D7
Now that you have seen how we load correctly a texture is time to experiment to discover what we can do with it, by trying:
https://www.shadertoy.com/view/XdB3DD
* Scaling the previus texture by half.
* Rotating the previus texture 90 degrees.
* Hooking the mouse position to the coordenates to move it.
https://www.shadertoy.com/view/XdBSWw
Why you should be excited about textures? Well first of all forget about the sad 255 values for channel, once your image is trasformed into a ```uniform sampler2D``` you have all the values between 0.0 and 1.0 (depending on what you set the ```precision``` to ). That's why shaders can make really beatiful post-processing effects.
https://www.shadertoy.com/view/llfGD2
Second, the [```vec2()```](index.html#vec2.md) means you can get values even between pixels. As we said before the textures are a continum. This means that if you set up your texture correctly you can ask for values all arround the surface of your image and the values will smoothly vary from pixel to pixel with no jumps!
Finnally, you can setup your image to repeat in the edges, so if you give values over or lower of the normalized 0.0 and 1.0, the values will wrap around starting over.
All this features makes your images more like an infinit spandex fabric. You can streach and shrinks your texture without noticing the grid of bites they originally where compose of or the ends of it. To experience this take a look to the following code where we distort a texture using [the noise function we already made](../11/).
<div class="codeAndCanvas" data="texture-noise.frag" data-imgs="hokusai.jpg"></div>
## Texture resolution
Aboves examples play well with squared images, where both sides are equal and match our squared billboard. But for non-squared images things can be a little more tricky, and unfortunatly centuries of picturical art and photography found more pleasent to the eye non-squared proportions for images.
![Joseph Nicéphore Niépce (1826)](nicephore.jpg)
How we can solve this problem? Well we need to know the original proportions of the image to know how to streatch the texture correctly in order to have the original [*aspect ratio*](http://en.wikipedia.org/wiki/Aspect_ratio). For that the texture width and height is pass to the shader as an ```uniform```. Which in our example framework are pass as an ```uniform vec2``` with the same name of the texture followed with proposition ```Resolution```. Once we have this information on the shader he can get the aspect ration by dividing the ```width``` for the ```height``` of the texture resolution. Finally by multiplying this ratio to the coordinates on ```y``` we will shrink these axis to match the original proportions.
Uncomment line 21 of the following code to see this in action.
<div class="codeAndCanvas" data="texture-resolution.frag" data-imgs="nicephore.jpg"></div>
* What we need to do to center this image?
## Digital upholstery
![](03.jpg)
You may be thinking that this is unnesesary complicated... and you are probably right. Also this way of working with images leave a enought room to different hacks and creative tricks. Try to imagine that you are an upholster and by streaching and folding a fabric over a structure you can create better and new patterns and techniques.
![Eadweard's Muybridge study of motion](muybridge.jpg)
This level of craftsmanship links back to some of the first optical experiments ever made. For example on games *sprite animations* are very common, and is inevitably to see on it reminicence to phenakistoscope, zoetrope and praxinoscope.
This could seam simple but the posibilities of modifing textures coordinates is enormus. For example: .
<div class="codeAndCanvas" data="texture-sprite.frag" data-imgs="muybridge.jpg"></div>
Now is your turn:
* Can you make a kaleidoscope using what we have learn?
* What other optical toys can you re-create using textures?
In the next chapters we will learn how to do some image processing using shaders. You will note that finnaly the complexity of shader makes sense, because was in a big sense designed to do this type of process. We will start doing some image operations!
https://www.shadertoy.com/view/Mlf3RX

@ -1,6 +1,7 @@
<?php
$path = "..";
$subtitle = ": Fractals";
$README = "README";
$language = "";

Binary file not shown.

Before

Width:  |  Height:  |  Size: 66 KiB

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

After

Width:  |  Height:  |  Size: 218 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 177 KiB

After

Width:  |  Height:  |  Size: 105 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 80 KiB

After

Width:  |  Height:  |  Size: 40 KiB

@ -1,18 +1,72 @@
## Image operations
# Image processing
## Textures
### Invert
![](01.jpg)
<div class="codeAndCanvas" data="inv.frag" data-imgs="00.jpg,01.jpg"></div>
Graphic cards (GPUs) have special memory types for images. Usually on CPUs images are stores as arrays of bites but on GPUs store images as ```sampler2D``` which is more like a table (or matrix) of floating point vectors. More interestingly is that the values of this *table* of vectors are continously. That means that value between pixels are interpolated in a low level.
### Add, Substract, Multiply and others
In order to use this feature we first need to *upload* the image from the CPU to the GPU, to then pass the ```id``` of the texture to the right [```uniform```](../05). All that happens outside the shader.
![](02.jpg)
Once the texture is loaded and linked to a valid ```uniform sampler2D``` you can ask for specific color value at specific coordinates (formated on a [```vec2```](index.html#vec2.md) variable) usin the [```texture2D()```](index.html#texture2D.md) function which will return a color formated on a [```vec4```](index.html#vec4.md) variable.
<div class="codeAndCanvas" data="operations.frag" data-imgs="00.jpg,01.jpg"></div>
```glsl
vec4 texture2D(sampler2D texture, vec2 coordinates)
```
### PS Blending modes
Check the following code where we load Hokusai's Wave (1830) as ```uniform sampler2D u_tex0``` and we call every pixel of it inside the billboard:
<div class="codeAndCanvas" data="texture.frag" data-imgs="hokusai.jpg"></div>
If you pay attention you will note that the coordinates for the texture are normalized! What a surprise right? Textures coordenates are consisten with the rest of the things we had saw and their coordenates are between 0.0 and 1.0 whitch match perfectly with the normalized space coordinates we have been using.
Now that you have seen how we load correctly a texture is time to experiment to discover what we can do with it, by trying:
* Scaling the previus texture by half.
* Rotating the previus texture 90 degrees.
* Hooking the mouse position to the coordenates to move it.
Why you should be excited about textures? Well first of all forget about the sad 255 values for channel, once your image is trasformed into a ```uniform sampler2D``` you have all the values between 0.0 and 1.0 (depending on what you set the ```precision``` to ). That's why shaders can make really beatiful post-processing effects.
Second, the [```vec2()```](index.html#vec2.md) means you can get values even between pixels. As we said before the textures are a continum. This means that if you set up your texture correctly you can ask for values all arround the surface of your image and the values will smoothly vary from pixel to pixel with no jumps!
Finnally, you can setup your image to repeat in the edges, so if you give values over or lower of the normalized 0.0 and 1.0, the values will wrap around starting over.
All this features makes your images more like an infinit spandex fabric. You can streach and shrinks your texture without noticing the grid of bites they originally where compose of or the ends of it. To experience this take a look to the following code where we distort a texture using [the noise function we already made](../11/).
<div class="codeAndCanvas" data="texture-noise.frag" data-imgs="hokusai.jpg"></div>
## Texture resolution
Aboves examples play well with squared images, where both sides are equal and match our squared billboard. But for non-squared images things can be a little more tricky, and unfortunatly centuries of picturical art and photography found more pleasent to the eye non-squared proportions for images.
![Joseph Nicéphore Niépce (1826)](nicephore.jpg)
How we can solve this problem? Well we need to know the original proportions of the image to know how to streatch the texture correctly in order to have the original [*aspect ratio*](http://en.wikipedia.org/wiki/Aspect_ratio). For that the texture width and height is pass to the shader as an ```uniform```. Which in our example framework are pass as an ```uniform vec2``` with the same name of the texture followed with proposition ```Resolution```. Once we have this information on the shader he can get the aspect ration by dividing the ```width``` for the ```height``` of the texture resolution. Finally by multiplying this ratio to the coordinates on ```y``` we will shrink these axis to match the original proportions.
Uncomment line 21 of the following code to see this in action.
<div class="codeAndCanvas" data="texture-resolution.frag" data-imgs="nicephore.jpg"></div>
* What we need to do to center this image?
## Digital upholstery
![](03.jpg)
<div class="codeAndCanvas" data="blend.frag" data-imgs="04.jpg,05.jpg"></div>
You may be thinking that this is unnesesary complicated... and you are probably right. Also this way of working with images leave a enought room to different hacks and creative tricks. Try to imagine that you are an upholster and by streaching and folding a fabric over a structure you can create better and new patterns and techniques.
![Eadweard's Muybridge study of motion](muybridge.jpg)
This level of craftsmanship links back to some of the first optical experiments ever made. For example on games *sprite animations* are very common, and is inevitably to see on it reminicence to phenakistoscope, zoetrope and praxinoscope.
This could seam simple but the posibilities of modifing textures coordinates is enormus. For example: .
<div class="codeAndCanvas" data="texture-sprite.frag" data-imgs="muybridge.jpg"></div>
Now is your turn:
* Can you make a kaleidoscope using what we have learn?
* What other optical toys can you re-create using textures?
In the next chapters we will learn how to do some image processing using shaders. You will note that finnaly the complexity of shader makes sense, because was in a big sense designed to do this type of process. We will start doing some image operations!

Before

Width:  |  Height:  |  Size: 516 KiB

After

Width:  |  Height:  |  Size: 516 KiB

Before

Width:  |  Height:  |  Size: 1.1 MiB

After

Width:  |  Height:  |  Size: 1.1 MiB

Before

Width:  |  Height:  |  Size: 148 KiB

After

Width:  |  Height:  |  Size: 148 KiB

Before

Width:  |  Height:  |  Size: 37 KiB

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 177 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Before

Width:  |  Height:  |  Size: 86 KiB

After

Width:  |  Height:  |  Size: 86 KiB

@ -1 +1,18 @@
## Kernel convolutions
## Image operations
### Invert
<div class="codeAndCanvas" data="inv.frag" data-imgs="00.jpg,01.jpg"></div>
### Add, Substract, Multiply and others
![](02.jpg)
<div class="codeAndCanvas" data="operations.frag" data-imgs="00.jpg,01.jpg"></div>
### PS Blending modes
![](03.jpg)
<div class="codeAndCanvas" data="blend.frag" data-imgs="04.jpg,05.jpg"></div>

@ -1 +1 @@
## Filters
## Kernel convolutions

@ -0,0 +1 @@
## Filters

Before

Width:  |  Height:  |  Size: 480 KiB

After

Width:  |  Height:  |  Size: 480 KiB

Before

Width:  |  Height:  |  Size: 516 KiB

After

Width:  |  Height:  |  Size: 516 KiB

@ -0,0 +1,32 @@
<?php
$path = "..";
$README = "README";
$language = "";
if ( !empty($_GET['lan']) ) {
if (file_exists($README.'-'.$_GET['lan'].'.md')) {
$language = '-'.$_GET['lan'];
$README .= $language;
}
}
include($path."/header.php");
include($path."/chap-header.php");
echo '<div id="content">';
include($path."/src/parsedown/Parsedown.php");
$Parsedown = new Parsedown();
echo $Parsedown->text(file_get_contents($README.'.md'));
echo '
</div>
<hr>
<ul class="navigationBar" >
<li class="navigationBar" onclick="previusPage()">&lt; &lt; Previous</li>
<li class="navigationBar" onclick="homePage()"> Home </li>
<li class="navigationBar" onclick="nextPage()">Next &gt; &gt;</li>
</ul>';
include($path."/footer.php");
?>

Before

Width:  |  Height:  |  Size: 2.0 KiB

After

Width:  |  Height:  |  Size: 2.0 KiB

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 18 KiB

Before

Width:  |  Height:  |  Size: 12 KiB

After

Width:  |  Height:  |  Size: 12 KiB

Before

Width:  |  Height:  |  Size: 17 KiB

After

Width:  |  Height:  |  Size: 17 KiB

Before

Width:  |  Height:  |  Size: 14 KiB

After

Width:  |  Height:  |  Size: 14 KiB

Before

Width:  |  Height:  |  Size: 13 KiB

After

Width:  |  Height:  |  Size: 13 KiB

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 15 KiB

Before

Width:  |  Height:  |  Size: 12 KiB

After

Width:  |  Height:  |  Size: 12 KiB

Before

Width:  |  Height:  |  Size: 10 KiB

After

Width:  |  Height:  |  Size: 10 KiB

Before

Width:  |  Height:  |  Size: 11 KiB

After

Width:  |  Height:  |  Size: 11 KiB

Before

Width:  |  Height:  |  Size: 17 KiB

After

Width:  |  Height:  |  Size: 17 KiB

Before

Width:  |  Height:  |  Size: 2.0 KiB

After

Width:  |  Height:  |  Size: 2.0 KiB

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 18 KiB

Loading…
Cancel
Save