2
0
mirror of https://github.com/carlostrub/sisyphus synced 2024-10-31 09:20:15 +00:00
sisyphus/classify.go
2017-06-05 13:33:32 +00:00

211 lines
4.6 KiB
Go

package sisyphus
import (
"os"
log "github.com/sirupsen/logrus"
"github.com/boltdb/bolt"
"github.com/gonum/stat"
"github.com/retailnext/hllpp"
)
// classificationPrior returns the prior probabilities for good and junk
// classes.
func classificationPrior(db *bolt.DB) (g float64, err error) {
gTotal, jTotal, err := classificationStatistics(db)
if err != nil {
return g, err
}
return gTotal / (gTotal + jTotal), err
}
// classificationLikelihoodWordcounts gets wordcounts from database to be used
// in Likelihood calculation
func classificationLikelihoodWordcounts(db *bolt.DB, word string) (gN, jN float64, err error) {
err = db.View(func(tx *bolt.Tx) error {
b := tx.Bucket([]byte("Wordlists"))
good := b.Bucket([]byte("Good"))
gWordRaw := good.Get([]byte(word))
if len(gWordRaw) > 0 {
gWordHLL, err := hllpp.Unmarshal(gWordRaw)
if err != nil {
return err
}
gN = float64(gWordHLL.Count())
}
junk := b.Bucket([]byte("Junk"))
jWordRaw := junk.Get([]byte(word))
if len(jWordRaw) > 0 {
jWordHLL, err := hllpp.Unmarshal(jWordRaw)
if err != nil {
return err
}
jN = float64(jWordHLL.Count())
}
return nil
})
return gN, jN, err
}
// classificationStatistics gets global statistics from database to
// be used in Likelihood calculation
func classificationStatistics(db *bolt.DB) (gTotal, jTotal float64, err error) {
err = db.View(func(tx *bolt.Tx) error {
p := tx.Bucket([]byte("Statistics"))
gRaw := p.Get([]byte("ProcessedGood"))
if len(gRaw) > 0 {
gHLL, err := hllpp.Unmarshal(gRaw)
if err != nil {
return err
}
gTotal = float64(gHLL.Count())
}
jRaw := p.Get([]byte("ProcessedJunk"))
if len(jRaw) > 0 {
jHLL, err := hllpp.Unmarshal(jRaw)
if err != nil {
return err
}
jTotal = float64(jHLL.Count())
}
if gTotal == 0 && jTotal == 0 {
log.Warning("no mails have yet been learned")
return nil
}
if gTotal == 0 {
log.Warning("no good mails have yet been learned")
return nil
}
if jTotal == 0 {
log.Warning("no junk mails have yet been learned")
return nil
}
return nil
})
return gTotal, jTotal, err
}
// classificationLikelihood returns P(W|C_j) -- the probability of seeing a
// particular word W in a document of this class.
func classificationLikelihood(db *bolt.DB, word string) (g, j float64, err error) {
gN, jN, err := classificationLikelihoodWordcounts(db, word)
if err != nil {
return g, j, err
}
gTotal, jTotal, err := classificationStatistics(db)
if err != nil {
return g, j, err
}
g = gN / gTotal
j = jN / jTotal
return g, j, err
}
// classificationWord produces the conditional probability of a word belonging
// to good or junk using the classic Bayes' rule.
func classificationWord(db *bolt.DB, word string) (g float64, err error) {
priorG, err := classificationPrior(db)
if err != nil {
return g, err
}
likelihoodG, likelihoodJ, err := classificationLikelihood(db, word)
if err != nil {
return g, err
}
g = (likelihoodG * priorG) / (likelihoodG*priorG + likelihoodJ*(1-priorG))
return g, nil
}
// Classify analyses a new mail (a mail that arrived in the "new" directory),
// decides whether it is junk and -- if so -- moves it to the Junk folder. If
// it is not junk, the mail is untouched so it can be handled by the mail
// client.
func (m *Mail) Classify(db *bolt.DB, dir Maildir) (err error) {
m.New = true
err = m.Load(dir)
if err != nil {
return err
}
list, err := m.cleanWordlist()
if err != nil {
return err
}
junk, prob, err := Junk(db, list)
if err != nil {
return err
}
m.Junk = junk
log.WithFields(log.Fields{
"mail": m.Key,
"junk": m.Junk,
"probability": prob,
"dir": string(dir),
}).Info("Classified")
// Move mail around if junk.
if junk {
err := os.Rename(string(dir)+"/new/"+m.Key, string(dir)+"/.Junk/cur/"+m.Key)
if err != nil {
return err
}
log.WithFields(log.Fields{
"mail": m.Key,
}).Info("Moved to Junk folder")
}
return nil
}
// Junk returns true if the wordlist is classified as a junk mail using Bayes'
// rule. If required, it also returns the calculated probability of being junk,
// but this is typically not needed.
func Junk(db *bolt.DB, wordlist []string) (junk bool, prob float64, err error) {
var probabilities []float64
// initial value should be no junk
prob = 1.0
for _, val := range wordlist {
var p float64
p, err = classificationWord(db, val)
if err != nil {
return false, 0.0, err
}
probabilities = append(probabilities, p)
}
if len(probabilities) > 0 {
prob = stat.HarmonicMean(probabilities, nil)
}
if prob < 0.5 {
return true, (1 - prob), err
}
return false, (1 - prob), err
}