2
0
mirror of https://github.com/carlostrub/sisyphus synced 2024-10-31 09:20:15 +00:00
sisyphus/classify.go

218 lines
4.8 KiB
Go
Raw Permalink Normal View History

2017-04-15 20:23:26 +00:00
package sisyphus
import (
"os"
"path/filepath"
2017-05-18 19:21:46 +00:00
log "github.com/sirupsen/logrus"
"github.com/boltdb/bolt"
2017-05-08 03:29:25 +00:00
"github.com/gonum/stat"
"github.com/retailnext/hllpp"
)
2017-05-08 03:29:25 +00:00
// classificationPrior returns the prior probabilities for good and junk
// classes.
2017-05-08 03:29:25 +00:00
func classificationPrior(db *bolt.DB) (g float64, err error) {
2017-05-15 22:26:44 +00:00
gTotal, jTotal, err := classificationStatistics(db)
if err != nil {
return g, err
}
2017-05-15 22:26:44 +00:00
return gTotal / (gTotal + jTotal), err
}
2017-05-13 22:34:54 +00:00
// classificationLikelihoodWordcounts gets wordcounts from database to be used
// in Likelihood calculation
func classificationLikelihoodWordcounts(db *bolt.DB, word string) (gN, jN float64, err error) {
2017-05-08 03:29:25 +00:00
err = db.View(func(tx *bolt.Tx) error {
b := tx.Bucket([]byte("Wordlists"))
2017-05-08 03:29:25 +00:00
good := b.Bucket([]byte("Good"))
2017-05-08 03:29:25 +00:00
gWordRaw := good.Get([]byte(word))
2017-05-13 21:22:23 +00:00
if len(gWordRaw) > 0 {
2017-09-17 17:17:43 +00:00
var gWordHLL *hllpp.HLLPP
gWordHLL, err = hllpp.Unmarshal(gWordRaw)
2017-05-08 03:29:25 +00:00
if err != nil {
return err
}
2017-05-13 22:34:54 +00:00
gN = float64(gWordHLL.Count())
2017-05-08 03:29:25 +00:00
}
junk := b.Bucket([]byte("Junk"))
2017-05-08 03:29:25 +00:00
jWordRaw := junk.Get([]byte(word))
2017-05-13 21:22:23 +00:00
if len(jWordRaw) > 0 {
2017-09-17 17:17:43 +00:00
var jWordHLL *hllpp.HLLPP
jWordHLL, err = hllpp.Unmarshal(jWordRaw)
2017-05-08 03:29:25 +00:00
if err != nil {
return err
}
2017-05-13 22:34:54 +00:00
jN = float64(jWordHLL.Count())
2017-05-08 03:29:25 +00:00
}
2017-05-13 22:34:54 +00:00
return nil
})
return gN, jN, err
}
2017-05-15 22:26:44 +00:00
// classificationStatistics gets global statistics from database to
2017-05-13 22:34:54 +00:00
// be used in Likelihood calculation
2017-05-15 22:26:44 +00:00
func classificationStatistics(db *bolt.DB) (gTotal, jTotal float64, err error) {
2017-05-13 22:34:54 +00:00
err = db.View(func(tx *bolt.Tx) error {
2017-05-08 03:29:25 +00:00
p := tx.Bucket([]byte("Statistics"))
2017-05-13 21:22:23 +00:00
gRaw := p.Get([]byte("ProcessedGood"))
if len(gRaw) > 0 {
2017-09-17 17:17:43 +00:00
var gHLL *hllpp.HLLPP
gHLL, err = hllpp.Unmarshal(gRaw)
2017-05-13 21:22:23 +00:00
if err != nil {
return err
}
2017-05-13 22:34:54 +00:00
gTotal = float64(gHLL.Count())
2017-05-08 03:29:25 +00:00
}
2017-05-13 21:22:23 +00:00
jRaw := p.Get([]byte("ProcessedJunk"))
if len(jRaw) > 0 {
2017-09-17 17:17:43 +00:00
var jHLL *hllpp.HLLPP
jHLL, err = hllpp.Unmarshal(jRaw)
2017-05-13 21:22:23 +00:00
if err != nil {
return err
}
2017-05-13 22:34:54 +00:00
jTotal = float64(jHLL.Count())
2017-05-08 03:29:25 +00:00
}
if gTotal == 0 && jTotal == 0 {
log.Warning("no mails have yet been learned")
return nil
}
2017-05-08 03:29:25 +00:00
if gTotal == 0 {
log.Warning("no good mails have yet been learned")
return nil
2017-05-08 03:29:25 +00:00
}
if jTotal == 0 {
log.Warning("no junk mails have yet been learned")
return nil
2017-05-08 03:29:25 +00:00
}
return nil
})
2017-05-13 22:34:54 +00:00
return gTotal, jTotal, err
}
// classificationLikelihood returns P(W|C_j) -- the probability of seeing a
// particular word W in a document of this class.
func classificationLikelihood(db *bolt.DB, word string) (g, j float64, err error) {
gN, jN, err := classificationLikelihoodWordcounts(db, word)
if err != nil {
return g, j, err
}
2017-05-15 22:26:44 +00:00
gTotal, jTotal, err := classificationStatistics(db)
2017-05-13 22:34:54 +00:00
if err != nil {
return g, j, err
}
g = gN / gTotal
j = jN / jTotal
2017-05-10 17:23:25 +00:00
return g, j, err
2017-05-08 03:29:25 +00:00
}
// classificationWord produces the conditional probability of a word belonging
// to good or junk using the classic Bayes' rule.
func classificationWord(db *bolt.DB, word string) (g float64, err error) {
priorG, err := classificationPrior(db)
if err != nil {
return g, err
}
likelihoodG, likelihoodJ, err := classificationLikelihood(db, word)
if err != nil {
return g, err
}
g = (likelihoodG * priorG) / (likelihoodG*priorG + likelihoodJ*(1-priorG))
return g, nil
}
// Classify analyses a new mail (a mail that arrived in the "new" directory),
// decides whether it is junk and -- if so -- moves it to the Junk folder. If
// it is not junk, the mail is untouched so it can be handled by the mail
// client.
func (m *Mail) Classify(db *bolt.DB, dir Maildir) (err error) {
m.New = true
err = m.Load(dir)
if err != nil {
return err
}
2017-05-13 22:34:54 +00:00
list, err := m.cleanWordlist()
2017-05-10 17:23:25 +00:00
if err != nil {
return err
}
junk, prob, err := Junk(db, list)
if err != nil {
return err
}
m.Junk = junk
2017-05-23 20:43:17 +00:00
log.WithFields(log.Fields{
"mail": m.Key,
"junk": m.Junk,
"probability": prob,
"dir": string(dir),
2017-05-23 20:43:17 +00:00
}).Info("Classified")
// Move mail around if junk.
if junk {
err = os.Rename(filepath.Join(string(dir), "new", m.Key), filepath.Join(string(dir), ".Junk", "cur", m.Key))
if err != nil {
return err
}
2017-05-23 20:43:17 +00:00
log.WithFields(log.Fields{
"mail": m.Key,
}).Info("Moved to Junk folder")
}
2017-09-16 22:56:17 +00:00
err = m.Unload(dir)
return err
}
2017-05-08 03:29:25 +00:00
// Junk returns true if the wordlist is classified as a junk mail using Bayes'
2017-05-13 21:22:23 +00:00
// rule. If required, it also returns the calculated probability of being junk,
// but this is typically not needed.
func Junk(db *bolt.DB, wordlist []string) (junk bool, prob float64, err error) {
2017-05-08 03:29:25 +00:00
var probabilities []float64
// initial value should be no junk
prob = 1.0
2017-05-08 03:29:25 +00:00
for _, val := range wordlist {
var p float64
p, err = classificationWord(db, val)
2017-05-08 03:29:25 +00:00
if err != nil {
return false, 0.0, err
2017-05-08 03:29:25 +00:00
}
probabilities = append(probabilities, p)
}
if len(probabilities) > 0 {
prob = stat.HarmonicMean(probabilities, nil)
}
if prob < 0.5 {
return true, (1 - prob), err
}
return false, (1 - prob), err
}