scrcpy/app/src/audio_player.c

417 lines
15 KiB
C
Raw Normal View History

#include "audio_player.h"
#include <libavcodec/avcodec.h>
#include <libavutil/opt.h>
#include "util/log.h"
#define SC_AUDIO_PLAYER_NDEBUG // comment to debug
/** Downcast frame_sink to sc_audio_player */
#define DOWNCAST(SINK) container_of(SINK, struct sc_audio_player, frame_sink)
#define SC_AV_SAMPLE_FMT AV_SAMPLE_FMT_FLT
#define SC_SDL_SAMPLE_FMT AUDIO_F32
#define SC_AUDIO_OUTPUT_BUFFER_MS 5
#define TO_BYTES(SAMPLES) sc_audiobuf_to_bytes(&ap->buf, (SAMPLES))
#define TO_SAMPLES(BYTES) sc_audiobuf_to_samples(&ap->buf, (BYTES))
static void SDLCALL
sc_audio_player_sdl_callback(void *userdata, uint8_t *stream, int len_int) {
struct sc_audio_player *ap = userdata;
// This callback is called with the lock used by SDL_AudioDeviceLock(), so
// the audiobuf is protected
assert(len_int > 0);
size_t len = len_int;
uint32_t count = TO_SAMPLES(len);
#ifndef SC_AUDIO_PLAYER_NDEBUG
LOGD("[Audio] SDL callback requests %" PRIu32 " samples", count);
#endif
uint32_t buffered_samples = sc_audiobuf_can_read(&ap->buf);
if (!ap->played) {
// Part of the buffering is handled by inserting initial silence. The
// remaining (margin) last samples will be handled by compensation.
uint32_t margin = 30 * ap->sample_rate / 1000; // 30ms
if (buffered_samples + margin < ap->target_buffering) {
LOGV("[Audio] Inserting initial buffering silence: %" PRIu32
" samples", count);
// Delay playback starting to reach the target buffering. Fill the
// whole buffer with silence (len is small compared to the
// arbitrary margin value).
memset(stream, 0, len);
return;
}
}
uint32_t read = MIN(buffered_samples, count);
if (read) {
sc_audiobuf_read(&ap->buf, stream, read);
}
if (read < count) {
uint32_t silence = count - read;
// Insert silence. In theory, the inserted silent samples replace the
// missing real samples, which will arrive later, so they should be
// dropped to keep the latency minimal. However, this would cause very
// audible glitches, so let the clock compensation restore the target
// latency.
LOGD("[Audio] Buffer underflow, inserting silence: %" PRIu32 " samples",
silence);
memset(stream + read, 0, TO_BYTES(silence));
if (ap->received) {
// Inserting additional samples immediately increases buffering
ap->underflow += silence;
}
}
ap->played = true;
}
static uint8_t *
sc_audio_player_get_swr_buf(struct sc_audio_player *ap, uint32_t min_samples) {
size_t min_buf_size = TO_BYTES(min_samples);
if (min_buf_size > ap->swr_buf_alloc_size) {
size_t new_size = min_buf_size + 4096;
uint8_t *buf = realloc(ap->swr_buf, new_size);
if (!buf) {
LOG_OOM();
// Could not realloc to the requested size
return NULL;
}
ap->swr_buf = buf;
ap->swr_buf_alloc_size = new_size;
}
return ap->swr_buf;
}
static bool
sc_audio_player_frame_sink_push(struct sc_frame_sink *sink,
const AVFrame *frame) {
struct sc_audio_player *ap = DOWNCAST(sink);
SwrContext *swr_ctx = ap->swr_ctx;
int64_t swr_delay = swr_get_delay(swr_ctx, ap->sample_rate);
// No need to av_rescale_rnd(), input and output sample rates are the same.
// Add more space (256) for clock compensation.
int dst_nb_samples = swr_delay + frame->nb_samples + 256;
uint8_t *swr_buf = sc_audio_player_get_swr_buf(ap, dst_nb_samples);
if (!swr_buf) {
return false;
}
int ret = swr_convert(swr_ctx, &swr_buf, dst_nb_samples,
(const uint8_t **) frame->data, frame->nb_samples);
if (ret < 0) {
LOGE("Resampling failed: %d", ret);
return false;
}
// swr_convert() returns the number of samples which would have been
// written if the buffer was big enough.
uint32_t samples_written = MIN(ret, dst_nb_samples);
#ifndef SC_AUDIO_PLAYER_NDEBUG
LOGD("[Audio] %" PRIu32 " samples written to buffer", samples_written);
#endif
// Since this function is the only writer, the current available space is
// at least the previous available space. In practice, it should almost
// always be possible to write without lock.
bool lockless_write = samples_written <= ap->previous_can_write;
if (lockless_write) {
sc_audiobuf_prepare_write(&ap->buf, swr_buf, samples_written);
}
SDL_LockAudioDevice(ap->device);
uint32_t buffered_samples = sc_audiobuf_can_read(&ap->buf);
if (lockless_write) {
sc_audiobuf_commit_write(&ap->buf, samples_written);
} else {
uint32_t can_write = sc_audiobuf_can_write(&ap->buf);
if (samples_written > can_write) {
// Entering this branch is very unlikely, the audio buffer is
// allocated with a size sufficient to store 1 second more than the
// target buffering. If this happens, though, we have to skip old
// samples.
uint32_t cap = sc_audiobuf_capacity(&ap->buf);
if (samples_written > cap) {
// Very very unlikely: a single resampled frame should never
// exceed the audio buffer size (or something is very wrong).
// Ignore the first bytes in swr_buf
swr_buf += TO_BYTES(samples_written - cap);
// This change in samples_written will impact the
// instant_compensation below
samples_written = cap;
}
assert(samples_written >= can_write);
if (samples_written > can_write) {
uint32_t skip_samples = samples_written - can_write;
assert(buffered_samples >= skip_samples);
sc_audiobuf_skip(&ap->buf, skip_samples);
buffered_samples -= skip_samples;
if (ap->played) {
// Dropping input samples instantly decreases buffering
ap->avg_buffering.avg -= skip_samples;
}
}
// It should remain exactly the expected size to write the new
// samples.
assert(sc_audiobuf_can_write(&ap->buf) == samples_written);
}
sc_audiobuf_write(&ap->buf, swr_buf, samples_written);
}
buffered_samples += samples_written;
assert(buffered_samples == sc_audiobuf_can_read(&ap->buf));
// Read with lock held, to be used after unlocking
bool played = ap->played;
uint32_t underflow = ap->underflow;
if (played) {
uint32_t max_buffered_samples = ap->target_buffering
+ 12 * SC_AUDIO_OUTPUT_BUFFER_MS * ap->sample_rate / 1000
+ ap->target_buffering / 10;
if (buffered_samples > max_buffered_samples) {
uint32_t skip_samples = buffered_samples - max_buffered_samples;
sc_audiobuf_skip(&ap->buf, skip_samples);
LOGD("[Audio] Buffering threshold exceeded, skipping %" PRIu32
" samples", skip_samples);
}
// reset (the current value was copied to a local variable)
ap->underflow = 0;
} else {
// SDL playback not started yet, do not accumulate more than
// max_initial_buffering samples, this would cause unnecessary delay
// (and glitches to compensate) on start.
uint32_t max_initial_buffering = ap->target_buffering
+ 2 * SC_AUDIO_OUTPUT_BUFFER_MS * ap->sample_rate / 1000;
if (buffered_samples > max_initial_buffering) {
uint32_t skip_samples = buffered_samples - max_initial_buffering;
sc_audiobuf_skip(&ap->buf, skip_samples);
#ifndef SC_AUDIO_PLAYER_NDEBUG
LOGD("[Audio] Playback not started, skipping %" PRIu32 " samples",
skip_samples);
#endif
}
}
ap->previous_can_write = sc_audiobuf_can_write(&ap->buf);
ap->received = true;
SDL_UnlockAudioDevice(ap->device);
if (played) {
// Number of samples added (or removed, if negative) for compensation
int32_t instant_compensation =
(int32_t) samples_written - frame->nb_samples;
int32_t inserted_silence = (int32_t) underflow;
// The compensation must apply instantly, it must not be smoothed
ap->avg_buffering.avg += instant_compensation + inserted_silence;
// However, the buffering level must be smoothed
sc_average_push(&ap->avg_buffering, buffered_samples);
#ifndef SC_AUDIO_PLAYER_NDEBUG
LOGD("[Audio] buffered_samples=%" PRIu32 " avg_buffering=%f",
buffered_samples, sc_average_get(&ap->avg_buffering));
#endif
ap->samples_since_resync += samples_written;
if (ap->samples_since_resync >= ap->sample_rate) {
// Recompute compensation every second
ap->samples_since_resync = 0;
float avg = sc_average_get(&ap->avg_buffering);
int diff = ap->target_buffering - avg;
if (diff < 0 && buffered_samples < ap->target_buffering) {
// Do not accelerate if the instant buffering level is below
// the average, this would increase underflow
diff = 0;
}
// Compensate the diff over 4 seconds (but will be recomputed after
// 1 second)
int distance = 4 * ap->sample_rate;
// Limit compensation rate to 2%
int abs_max_diff = distance / 50;
diff = CLAMP(diff, -abs_max_diff, abs_max_diff);
LOGV("[Audio] Buffering: target=%" PRIu32 " avg=%f cur=%" PRIu32
" compensation=%d", ap->target_buffering, avg,
buffered_samples, diff);
int ret = swr_set_compensation(swr_ctx, diff, distance);
if (ret < 0) {
LOGW("Resampling compensation failed: %d", ret);
// not fatal
}
}
}
return true;
}
static bool
sc_audio_player_frame_sink_open(struct sc_frame_sink *sink,
const AVCodecContext *ctx) {
struct sc_audio_player *ap = DOWNCAST(sink);
#ifdef SCRCPY_LAVU_HAS_CHLAYOUT
assert(ctx->ch_layout.nb_channels > 0);
unsigned nb_channels = ctx->ch_layout.nb_channels;
#else
int tmp = av_get_channel_layout_nb_channels(ctx->channel_layout);
assert(tmp > 0);
unsigned nb_channels = tmp;
#endif
SDL_AudioSpec desired = {
.freq = ctx->sample_rate,
.format = SC_SDL_SAMPLE_FMT,
.channels = nb_channels,
.samples = SC_AUDIO_OUTPUT_BUFFER_MS * ctx->sample_rate / 1000,
.callback = sc_audio_player_sdl_callback,
.userdata = ap,
};
SDL_AudioSpec obtained;
ap->device = SDL_OpenAudioDevice(NULL, 0, &desired, &obtained, 0);
if (!ap->device) {
LOGE("Could not open audio device: %s", SDL_GetError());
return false;
}
SwrContext *swr_ctx = swr_alloc();
if (!swr_ctx) {
LOG_OOM();
goto error_close_audio_device;
}
ap->swr_ctx = swr_ctx;
assert(ctx->sample_rate > 0);
assert(!av_sample_fmt_is_planar(SC_AV_SAMPLE_FMT));
int out_bytes_per_sample = av_get_bytes_per_sample(SC_AV_SAMPLE_FMT);
assert(out_bytes_per_sample > 0);
#ifdef SCRCPY_LAVU_HAS_CHLAYOUT
av_opt_set_chlayout(swr_ctx, "in_chlayout", &ctx->ch_layout, 0);
av_opt_set_chlayout(swr_ctx, "out_chlayout", &ctx->ch_layout, 0);
#else
av_opt_set_channel_layout(swr_ctx, "in_channel_layout",
ctx->channel_layout, 0);
av_opt_set_channel_layout(swr_ctx, "out_channel_layout",
ctx->channel_layout, 0);
#endif
av_opt_set_int(swr_ctx, "in_sample_rate", ctx->sample_rate, 0);
av_opt_set_int(swr_ctx, "out_sample_rate", ctx->sample_rate, 0);
av_opt_set_sample_fmt(swr_ctx, "in_sample_fmt", ctx->sample_fmt, 0);
av_opt_set_sample_fmt(swr_ctx, "out_sample_fmt", SC_AV_SAMPLE_FMT, 0);
int ret = swr_init(swr_ctx);
if (ret) {
LOGE("Failed to initialize the resampling context");
goto error_free_swr_ctx;
}
ap->sample_rate = ctx->sample_rate;
ap->nb_channels = nb_channels;
ap->out_bytes_per_sample = out_bytes_per_sample;
ap->target_buffering = ap->target_buffering_delay * ap->sample_rate
/ SC_TICK_FREQ;
// Use a ring-buffer of the target buffering size plus 1 second between the
// producer and the consumer. It's too big on purpose, to guarantee that
// the producer and the consumer will be able to access it in parallel
// without locking.
size_t audiobuf_samples = ap->target_buffering + ap->sample_rate;
size_t sample_size = ap->nb_channels * ap->out_bytes_per_sample;
bool ok = sc_audiobuf_init(&ap->buf, sample_size, audiobuf_samples);
if (!ok) {
goto error_free_swr_ctx;
}
size_t initial_swr_buf_size = TO_BYTES(4096);
ap->swr_buf = malloc(initial_swr_buf_size);
if (!ap->swr_buf) {
LOG_OOM();
goto error_destroy_audiobuf;
}
ap->swr_buf_alloc_size = initial_swr_buf_size;
ap->previous_can_write = sc_audiobuf_can_write(&ap->buf);
// Samples are produced and consumed by blocks, so the buffering must be
// smoothed to get a relatively stable value.
sc_average_init(&ap->avg_buffering, 32);
ap->samples_since_resync = 0;
ap->received = false;
ap->played = false;
ap->underflow = 0;
// The thread calling open() is the thread calling push(), which fills the
// audio buffer consumed by the SDL audio thread.
ok = sc_thread_set_priority(SC_THREAD_PRIORITY_TIME_CRITICAL);
if (!ok) {
ok = sc_thread_set_priority(SC_THREAD_PRIORITY_HIGH);
(void) ok; // We don't care if it worked, at least we tried
}
SDL_PauseAudioDevice(ap->device, 0);
return true;
error_destroy_audiobuf:
sc_audiobuf_destroy(&ap->buf);
error_free_swr_ctx:
swr_free(&ap->swr_ctx);
error_close_audio_device:
SDL_CloseAudioDevice(ap->device);
return false;
}
static void
sc_audio_player_frame_sink_close(struct sc_frame_sink *sink) {
struct sc_audio_player *ap = DOWNCAST(sink);
assert(ap->device);
SDL_PauseAudioDevice(ap->device, 1);
SDL_CloseAudioDevice(ap->device);
free(ap->swr_buf);
sc_audiobuf_destroy(&ap->buf);
swr_free(&ap->swr_ctx);
}
void
sc_audio_player_init(struct sc_audio_player *ap, sc_tick target_buffering) {
ap->target_buffering_delay = target_buffering;
static const struct sc_frame_sink_ops ops = {
.open = sc_audio_player_frame_sink_open,
.close = sc_audio_player_frame_sink_close,
.push = sc_audio_player_frame_sink_push,
};
ap->frame_sink.ops = &ops;
}