// SPDX-License-Identifier: MIT OR Apache-2.0 // // Copyright (c) 2018-2020 Andre Richter //! PL011 UART driver. use crate::{ bsp, bsp::device_driver::common::MMIODerefWrapper, console, cpu, driver, exception, memory, memory::mmu::Physical, synchronization, synchronization::IRQSafeNullLock, }; use core::{ fmt, sync::atomic::{AtomicUsize, Ordering}, }; use register::{mmio::*, register_bitfields, register_structs}; //-------------------------------------------------------------------------------------------------- // Private Definitions //-------------------------------------------------------------------------------------------------- // PL011 UART registers. // // Descriptions taken from // https://github.com/raspberrypi/documentation/files/1888662/BCM2837-ARM-Peripherals.-.Revised.-.V2-1.pdf register_bitfields! { u32, /// Flag Register FR [ /// Transmit FIFO empty. The meaning of this bit depends on the state of the FEN bit in the /// Line Control Register, UARTLCR_ LCRH. /// /// If the FIFO is disabled, this bit is set when the transmit holding register is empty. If /// the FIFO is enabled, the TXFE bit is set when the transmit FIFO is empty. This bit does /// not indicate if there is data in the transmit shift register. TXFE OFFSET(7) NUMBITS(1) [], /// Transmit FIFO full. The meaning of this bit depends on the state of the FEN bit in the /// UARTLCR_ LCRH Register. /// /// If the FIFO is disabled, this bit is set when the transmit holding register is full. If /// the FIFO is enabled, the TXFF bit is set when the transmit FIFO is full. TXFF OFFSET(5) NUMBITS(1) [], /// Receive FIFO empty. The meaning of this bit depends on the state of the FEN bit in the /// UARTLCR_H Register. /// /// If the FIFO is disabled, this bit is set when the receive holding register is empty. If /// the FIFO is enabled, the RXFE bit is set when the receive FIFO is empty. RXFE OFFSET(4) NUMBITS(1) [] ], /// Integer Baud rate divisor IBRD [ /// Integer Baud rate divisor IBRD OFFSET(0) NUMBITS(16) [] ], /// Fractional Baud rate divisor FBRD [ /// Fractional Baud rate divisor FBRD OFFSET(0) NUMBITS(6) [] ], /// Line Control register LCRH [ /// Word length. These bits indicate the number of data bits transmitted or received in a /// frame. WLEN OFFSET(5) NUMBITS(2) [ FiveBit = 0b00, SixBit = 0b01, SevenBit = 0b10, EightBit = 0b11 ], /// Enable FIFOs: /// /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become 1-byte-deep holding /// registers /// /// 1 = transmit and receive FIFO buffers are enabled (FIFO mode). FEN OFFSET(4) NUMBITS(1) [ FifosDisabled = 0, FifosEnabled = 1 ] ], /// Control Register CR [ /// Receive enable. If this bit is set to 1, the receive section of the UART is enabled. /// Data reception occurs for UART signals. When the UART is disabled in the middle of /// reception, it completes the current character before stopping. RXE OFFSET(9) NUMBITS(1) [ Disabled = 0, Enabled = 1 ], /// Transmit enable. If this bit is set to 1, the transmit section of the UART is enabled. /// Data transmission occurs for UART signals. When the UART is disabled in the middle of /// transmission, it completes the current character before stopping. TXE OFFSET(8) NUMBITS(1) [ Disabled = 0, Enabled = 1 ], /// UART enable UARTEN OFFSET(0) NUMBITS(1) [ /// If the UART is disabled in the middle of transmission or reception, it completes the /// current character before stopping. Disabled = 0, Enabled = 1 ] ], /// Interrupt FIFO Level Select Register IFLS [ /// Receive interrupt FIFO level select. The trigger points for the receive interrupt are as /// follows. RXIFLSEL OFFSET(3) NUMBITS(5) [ OneEigth = 0b000, OneQuarter = 0b001, OneHalf = 0b010, ThreeQuarters = 0b011, SevenEights = 0b100 ] ], /// Interrupt Mask Set Clear Register IMSC [ /// Receive timeout interrupt mask. A read returns the current mask for the UARTRTINTR /// interrupt. On a write of 1, the mask of the interrupt is set. A write of 0 clears the /// mask. RTIM OFFSET(6) NUMBITS(1) [ Disabled = 0, Enabled = 1 ], /// Receive interrupt mask. A read returns the current mask for the UARTRXINTR interrupt. On /// a write of 1, the mask of the interrupt is set. A write of 0 clears the mask. RXIM OFFSET(4) NUMBITS(1) [ Disabled = 0, Enabled = 1 ] ], /// Masked Interrupt Status Register MIS [ /// Receive timeout masked interrupt status. Returns the masked interrupt state of the /// UARTRTINTR interrupt. RTMIS OFFSET(6) NUMBITS(1) [], /// Receive masked interrupt status. Returns the masked interrupt state of the UARTRXINTR /// interrupt. RXMIS OFFSET(4) NUMBITS(1) [] ], /// Interrupt Clear Register ICR [ /// Meta field for all pending interrupts ALL OFFSET(0) NUMBITS(11) [] ] } register_structs! { #[allow(non_snake_case)] pub RegisterBlock { (0x00 => DR: ReadWrite), (0x04 => _reserved1), (0x18 => FR: ReadOnly), (0x1c => _reserved2), (0x24 => IBRD: WriteOnly), (0x28 => FBRD: WriteOnly), (0x2c => LCRH: WriteOnly), (0x30 => CR: WriteOnly), (0x34 => IFLS: ReadWrite), (0x38 => IMSC: ReadWrite), (0x3C => _reserved3), (0x40 => MIS: ReadOnly), (0x44 => ICR: WriteOnly), (0x48 => @END), } } /// Abstraction for the associated MMIO registers. type Registers = MMIODerefWrapper; #[derive(PartialEq)] enum BlockingMode { Blocking, NonBlocking, } //-------------------------------------------------------------------------------------------------- // Public Definitions //-------------------------------------------------------------------------------------------------- pub struct PL011UartInner { registers: Registers, chars_written: usize, chars_read: usize, } // Export the inner struct so that BSPs can use it for the panic handler. pub use PL011UartInner as PanicUart; /// Representation of the UART. pub struct PL011Uart { phys_mmio_descriptor: memory::mmu::MMIODescriptor, virt_mmio_start_addr: AtomicUsize, inner: IRQSafeNullLock, irq_number: bsp::device_driver::IRQNumber, } //-------------------------------------------------------------------------------------------------- // Public Code //-------------------------------------------------------------------------------------------------- impl PL011UartInner { /// Create an instance. /// /// # Safety /// /// - The user must ensure to provide a correct MMIO start address. pub const unsafe fn new(mmio_start_addr: usize) -> Self { Self { registers: Registers::new(mmio_start_addr), chars_written: 0, chars_read: 0, } } /// Set up baud rate and characteristics. /// /// The calculation for the BRD given a target rate of 2300400 and a clock set to 48 MHz is: /// `(48_000_000/16)/230400 = 13,02083`. `13` goes to the `IBRD` (integer field). The `FBRD` /// (fractional field) is only 6 bits so `0,0208*64 = 1,3312 rounded to 1` will give the best /// approximation we can get. A 5 % error margin is acceptable for UART and we're now at 0,01 %. /// /// This results in 8N1 and 230400 baud (we set the clock to 48 MHz in config.txt). /// /// # Safety /// /// - The user must ensure to provide a correct MMIO start address. pub unsafe fn init(&mut self, new_mmio_start_addr: Option) -> Result<(), &'static str> { if let Some(addr) = new_mmio_start_addr { self.registers = Registers::new(addr); } // Turn it off temporarily. self.registers.CR.set(0); self.registers.ICR.write(ICR::ALL::CLEAR); self.registers.IBRD.write(IBRD::IBRD.val(13)); self.registers.FBRD.write(FBRD::FBRD.val(1)); self.registers .LCRH .write(LCRH::WLEN::EightBit + LCRH::FEN::FifosEnabled); // 8N1 + Fifo on self.registers.IFLS.write(IFLS::RXIFLSEL::OneEigth); // RX FIFO fill level at 1/8 self.registers .IMSC .write(IMSC::RXIM::Enabled + IMSC::RTIM::Enabled); // RX IRQ + RX timeout IRQ self.registers .CR .write(CR::UARTEN::Enabled + CR::TXE::Enabled + CR::RXE::Enabled); Ok(()) } /// Send a character. fn write_char(&mut self, c: char) { // Spin while TX FIFO full is set, waiting for an empty slot. while self.registers.FR.matches_all(FR::TXFF::SET) { cpu::nop(); } // Write the character to the buffer. self.registers.DR.set(c as u32); self.chars_written += 1; } /// Retrieve a character. fn read_char_converting(&mut self, blocking_mode: BlockingMode) -> Option { // If RX FIFO is empty, if self.registers.FR.matches_all(FR::RXFE::SET) { // immediately return in non-blocking mode. if blocking_mode == BlockingMode::NonBlocking { return None; } // Otherwise, wait until a char was received. while self.registers.FR.matches_all(FR::RXFE::SET) { cpu::nop(); } } // Read one character. let mut ret = self.registers.DR.get() as u8 as char; // Convert carrige return to newline. if ret == '\r' { ret = '\n' } // Update statistics. self.chars_read += 1; Some(ret) } } /// Implementing `core::fmt::Write` enables usage of the `format_args!` macros, which in turn are /// used to implement the `kernel`'s `print!` and `println!` macros. By implementing `write_str()`, /// we get `write_fmt()` automatically. /// /// The function takes an `&mut self`, so it must be implemented for the inner struct. /// /// See [`src/print.rs`]. /// /// [`src/print.rs`]: ../../print/index.html impl fmt::Write for PL011UartInner { fn write_str(&mut self, s: &str) -> fmt::Result { for c in s.chars() { self.write_char(c); } Ok(()) } } impl PL011Uart { /// Create an instance. /// /// # Safety /// /// - The user must ensure to provide correct MMIO descriptors. /// - The user must ensure to provide correct IRQ numbers. pub const unsafe fn new( phys_mmio_descriptor: memory::mmu::MMIODescriptor, irq_number: bsp::device_driver::IRQNumber, ) -> Self { Self { phys_mmio_descriptor, virt_mmio_start_addr: AtomicUsize::new(0), inner: IRQSafeNullLock::new(PL011UartInner::new( phys_mmio_descriptor.start_addr().into_usize(), )), irq_number, } } } //------------------------------------------------------------------------------ // OS Interface Code //------------------------------------------------------------------------------ use synchronization::interface::Mutex; impl driver::interface::DeviceDriver for PL011Uart { fn compatible(&self) -> &'static str { "BCM PL011 UART" } unsafe fn init(&self) -> Result<(), &'static str> { let virt_addr = memory::mmu::kernel_map_mmio(self.compatible(), &self.phys_mmio_descriptor)?; let mut r = &self.inner; r.lock(|inner| inner.init(Some(virt_addr.into_usize())))?; self.virt_mmio_start_addr .store(virt_addr.into_usize(), Ordering::Relaxed); Ok(()) } fn register_and_enable_irq_handler(&'static self) -> Result<(), &'static str> { use bsp::exception::asynchronous::irq_manager; use exception::asynchronous::{interface::IRQManager, IRQDescriptor}; let descriptor = IRQDescriptor { name: "BCM PL011 UART", handler: self, }; irq_manager().register_handler(self.irq_number, descriptor)?; irq_manager().enable(self.irq_number); Ok(()) } fn virt_mmio_start_addr(&self) -> Option { let addr = self.virt_mmio_start_addr.load(Ordering::Relaxed); if addr == 0 { return None; } Some(addr) } } impl console::interface::Write for PL011Uart { /// Passthrough of `args` to the `core::fmt::Write` implementation, but guarded by a Mutex to /// serialize access. fn write_char(&self, c: char) { let mut r = &self.inner; r.lock(|inner| inner.write_char(c)); } fn write_fmt(&self, args: core::fmt::Arguments) -> fmt::Result { // Fully qualified syntax for the call to `core::fmt::Write::write:fmt()` to increase // readability. let mut r = &self.inner; r.lock(|inner| fmt::Write::write_fmt(inner, args)) } fn flush(&self) { // Spin until TX FIFO empty is set. let mut r = &self.inner; r.lock(|inner| { while !inner.registers.FR.matches_all(FR::TXFE::SET) { cpu::nop(); } }); } } impl console::interface::Read for PL011Uart { fn read_char(&self) -> char { let mut r = &self.inner; r.lock(|inner| inner.read_char_converting(BlockingMode::Blocking).unwrap()) } fn clear(&self) { let mut r = &self.inner; r.lock(|inner| { // Read from the RX FIFO until it is indicating empty. while !inner.registers.FR.matches_all(FR::RXFE::SET) { inner.registers.DR.get(); } }) } } impl console::interface::Statistics for PL011Uart { fn chars_written(&self) -> usize { let mut r = &self.inner; r.lock(|inner| inner.chars_written) } fn chars_read(&self) -> usize { let mut r = &self.inner; r.lock(|inner| inner.chars_read) } } impl exception::asynchronous::interface::IRQHandler for PL011Uart { fn handle(&self) -> Result<(), &'static str> { let mut r = &self.inner; r.lock(|inner| { let pending = inner.registers.MIS.extract(); // Clear all pending IRQs. inner.registers.ICR.write(ICR::ALL::CLEAR); // Check for any kind of RX interrupt. if pending.matches_any(MIS::RXMIS::SET + MIS::RTMIS::SET) { // Echo any received characters. while let Some(c) = inner.read_char_converting(BlockingMode::NonBlocking) { inner.write_char(c) } } }); Ok(()) } }