{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Notebook for running Chain-of-Thought with supporting context experiments " ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sys, os\n", "sys.path.append('..')\n", "root = '../root/'" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import joblib\n", "import numpy as np\n", "from agents import CoTAgent, ReflexionStrategy\n", "from util import summarize_trial, log_trial, save_agents" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Load the HotPotQA Sample" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "hotpot = joblib.load('../data/hotpot-qa-distractor-sample.joblib').reset_index(drop = True)\n", "\n", "hotpot['supporting_paragraphs'] = None\n", "for ind, row in hotpot.iterrows():\n", " supporting_articles = row['supporting_facts']['title']\n", " articles = row['context']['title']\n", " sentences = row['context']['sentences'] \n", " supporting_paragraphs = []\n", " for article in supporting_articles:\n", " supporting_paragraph = ''.join(sentences[np.where(articles == article)][0])\n", " supporting_paragraphs.append(supporting_paragraph)\n", " supporting_paragraphs = '\\n\\n'.join(supporting_paragraphs)\n", " hotpot.at[ind, 'supporting_paragraphs'] = supporting_paragraphs" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Define the Reflexion Strategy" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " NONE: No reflection\n", " LAST_ATTEMPT: Use last reasoning trace in context \n", " REFLEXION: Apply reflexion to the next reasoning trace \n", " LAST_ATTEMPT_AND_REFLEXION: Use last reasoning trace in context and apply reflexion to the next reasoning trace \n", " \n" ] } ], "source": [ "print(ReflexionStrategy.__doc__)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "strategy: ReflexionStrategy = ReflexionStrategy.REFLEXION" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Initialize a CoTAgent for each question" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from prompts import cot_agent_prompt, cot_reflect_agent_prompt, cot_reflect_prompt\n", "from fewshots import COT, COT_REFLECT\n", "agents = [CoTAgent(row['question'],\n", " row['supporting_paragraphs'],\n", " row['answer'],\n", " agent_prompt=cot_agent_prompt if strategy == ReflexionStrategy.NONE else cot_reflect_agent_prompt,\n", " cot_examples=COT,\n", " reflect_prompt=cot_reflect_prompt,\n", " reflect_examples=COT_REFLECT,\n", " ) for _, row in hotpot.iterrows()]" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Run `n` trials" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "n = 5\n", "trial = 0\n", "log = ''" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "ename": "ValidationError", "evalue": "1 validation error for HumanMessage\ncontent\n field required (type=value_error.missing)", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[9], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(n):\n\u001b[1;32m 2\u001b[0m \u001b[39mfor\u001b[39;00m agent \u001b[39min\u001b[39;00m [a \u001b[39mfor\u001b[39;00m a \u001b[39min\u001b[39;00m agents \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m a\u001b[39m.\u001b[39mis_correct()]:\n\u001b[0;32m----> 3\u001b[0m agent\u001b[39m.\u001b[39;49mrun(reflexion_strategy \u001b[39m=\u001b[39;49m strategy)\n\u001b[1;32m 4\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mAnswer: \u001b[39m\u001b[39m{\u001b[39;00magent\u001b[39m.\u001b[39mkey\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m)\n\u001b[1;32m 5\u001b[0m trial \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39m1\u001b[39m\n", "File \u001b[0;32m~/Documents/Research/reflexion/reflexion/hotpotqa_runs/notebooks/../agents.py:78\u001b[0m, in \u001b[0;36mCoTAgent.run\u001b[0;34m(self, reflexion_strategy)\u001b[0m\n\u001b[1;32m 76\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mreflect(reflexion_strategy)\n\u001b[1;32m 77\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mreset()\n\u001b[0;32m---> 78\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mstep()\n\u001b[1;32m 79\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstep_n \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39m1\u001b[39m\n", "File \u001b[0;32m~/Documents/Research/reflexion/reflexion/hotpotqa_runs/notebooks/../agents.py:84\u001b[0m, in \u001b[0;36mCoTAgent.step\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mstep\u001b[39m(\u001b[39mself\u001b[39m) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 82\u001b[0m \u001b[39m# Think\u001b[39;00m\n\u001b[1;32m 83\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mscratchpad \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39m\\n\u001b[39;00m\u001b[39mThought:\u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m---> 84\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mscratchpad \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39m'\u001b[39m\u001b[39m \u001b[39m\u001b[39m'\u001b[39m \u001b[39m+\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mprompt_agent()\n\u001b[1;32m 85\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mscratchpad\u001b[39m.\u001b[39msplit(\u001b[39m'\u001b[39m\u001b[39m\\n\u001b[39;00m\u001b[39m'\u001b[39m)[\u001b[39m-\u001b[39m\u001b[39m1\u001b[39m])\n\u001b[1;32m 87\u001b[0m \u001b[39m# Act\u001b[39;00m\n", "File \u001b[0;32m~/Documents/Research/reflexion/reflexion/hotpotqa_runs/notebooks/../agents.py:132\u001b[0m, in \u001b[0;36mCoTAgent.prompt_agent\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mprompt_agent\u001b[39m(\u001b[39mself\u001b[39m) \u001b[39m-\u001b[39m\u001b[39m>\u001b[39m \u001b[39mstr\u001b[39m:\n\u001b[0;32m--> 132\u001b[0m \u001b[39mreturn\u001b[39;00m format_step(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49maction_llm(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_build_agent_prompt()))\n", "File \u001b[0;32m~/Documents/Research/reflexion/reflexion/hotpotqa_runs/notebooks/../llm.py:25\u001b[0m, in \u001b[0;36mAnyOpenAILLM.__call__\u001b[0;34m(self, prompt)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmodel(prompt)\n\u001b[1;32m 22\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 23\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmodel(\n\u001b[1;32m 24\u001b[0m [\n\u001b[0;32m---> 25\u001b[0m HumanMessage(\n\u001b[1;32m 26\u001b[0m context\u001b[39m=\u001b[39;49mprompt,\n\u001b[1;32m 27\u001b[0m )\n\u001b[1;32m 28\u001b[0m ]\n\u001b[1;32m 29\u001b[0m )\u001b[39m.\u001b[39mcontent\n", "File \u001b[0;32m~/Documents/Research/reflexion/reflexion/env/lib/python3.11/site-packages/pydantic/main.py:341\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.__init__\u001b[0;34m()\u001b[0m\n", "\u001b[0;31mValidationError\u001b[0m: 1 validation error for HumanMessage\ncontent\n field required (type=value_error.missing)" ] } ], "source": [ "for i in range(n):\n", " for agent in [a for a in agents if not a.is_correct()]:\n", " agent.run(reflexion_strategy = strategy)\n", " print(f'Answer: {agent.key}')\n", " trial += 1\n", " log += log_trial(agents, trial)\n", " correct, incorrect = summarize_trial(agents)\n", " print(f'Finished Trial {trial}, Correct: {len(correct)}, Incorrect: {len(incorrect)}')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "#### Save the result log" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "with open(os.path.join(root, 'CoT', 'context', strategy.value, f'{len(agents)}_questions_{trial}_trials.txt'), 'w') as f:\n", " f.write(log)\n", "save_agents(agents, os.path.join(root, 'CoT', 'context', strategy.value, 'agents'))" ] } ], "metadata": { "kernelspec": { "display_name": "env", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "e23f799cbd2581634725fbf6ce3480ae26192d78438dfafc8efe944acd6490d5" } } }, "nbformat": 4, "nbformat_minor": 2 }