Initial check in of Python training code

pull/2/head
Michael Hansen 2 years ago
parent 344b483904
commit a6b2d2e69c

14
.gitignore vendored

@ -3,6 +3,14 @@
*.log
tmp/
build/
data/
*.wav
*.py[cod]
*.egg
build
htmlcov
/data/
/build/
/local/
*.so
.venv/

@ -1 +1,3 @@
- /build/
- /src/python/.venv/
- /local/

@ -0,0 +1,13 @@
#!/usr/bin/env bash
set -eo pipefail
this_dir="$( cd "$( dirname "$0" )" && pwd )"
if [ -d "${this_dir}/.venv" ]; then
source "${this_dir}/.venv/bin/activate"
fi
cd "${this_dir}/larynx_train/vits/monotonic_align"
mkdir -p monotonic_align
cythonize -i core.pyx
mv core*.so monotonic_align/

@ -0,0 +1,11 @@
.DS_Store
.idea
*.log
tmp/
*.py[cod]
*.egg
build
htmlcov
.venv/

@ -0,0 +1,6 @@
[settings]
multi_line_output=3
include_trailing_comma=True
force_grid_wrap=0
use_parentheses=True
line_length=88

@ -0,0 +1,61 @@
import argparse
import json
import logging
from pathlib import Path
import torch
from pytorch_lightning import Trainer
from .vits.lightning import VitsModel
_LOGGER = logging.getLogger(__package__)
def main():
logging.basicConfig(level=logging.DEBUG)
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset-dir", required=True, help="Path to pre-processed dataset directory"
)
Trainer.add_argparse_args(parser)
VitsModel.add_model_specific_args(parser)
parser.add_argument("--seed", type=int, default=1234)
args = parser.parse_args()
_LOGGER.debug(args)
args.dataset_dir = Path(args.dataset_dir)
if not args.default_root_dir:
args.default_root_dir = args.dataset_dir
torch.backends.cudnn.benchmark = True
torch.manual_seed(args.seed)
config_path = args.dataset_dir / "config.json"
dataset_path = args.dataset_dir / "dataset.jsonl"
with open(config_path, "r", encoding="utf-8") as config_file:
# See preprocess.py for format
config = json.load(config_file)
num_symbols = int(config["num_symbols"])
num_speakers = int(config["num_speakers"])
sample_rate = int(config["audio"]["sample_rate"])
trainer = Trainer.from_argparse_args(args)
dict_args = vars(args)
model = VitsModel(
num_symbols=num_symbols,
num_speakers=num_speakers,
sample_rate=sample_rate,
dataset=[dataset_path],
**dict_args
)
trainer.fit(model)
# -----------------------------------------------------------------------------
if __name__ == "__main__":
main()

@ -0,0 +1,20 @@
"""Shared access to package resources"""
import json
import os
import typing
from pathlib import Path
try:
import importlib.resources
files = importlib.resources.files
except (ImportError, AttributeError):
# Backport for Python < 3.9
import importlib_resources # type: ignore
files = importlib_resources.files
_PACKAGE = "larynx_train"
_DIR = Path(typing.cast(os.PathLike, files(_PACKAGE)))
__version__ = (_DIR / "VERSION").read_text(encoding="utf-8").strip()

@ -0,0 +1,107 @@
#!/usr/bin/env python3
import argparse
import logging
from pathlib import Path
from typing import Optional
import torch
from .vits.lightning import VitsModel
_LOGGER = logging.getLogger("mimic3_train.export_onnx")
OPSET_VERSION = 15
def main():
"""Main entry point"""
torch.manual_seed(12345)
parser = argparse.ArgumentParser(prog="mimic3_train.export_onnx")
parser.add_argument("checkpoint", help="Path to model checkpoint (.ckpt)")
parser.add_argument("output", help="Path to output model (.onnx)")
parser.add_argument(
"--debug", action="store_true", help="Print DEBUG messages to the console"
)
args = parser.parse_args()
if args.debug:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
_LOGGER.debug(args)
# -------------------------------------------------------------------------
args.checkpoint = Path(args.checkpoint)
args.output = Path(args.output)
args.output.parent.mkdir(parents=True, exist_ok=True)
model = VitsModel.load_from_checkpoint(args.checkpoint)
model_g = model.model_g
num_symbols = model_g.n_vocab
num_speakers = model_g.n_speakers
# Inference only
model_g.eval()
with torch.no_grad():
model_g.dec.remove_weight_norm()
# old_forward = model_g.infer
def infer_forward(text, text_lengths, scales, sid=None):
noise_scale = scales[0]
length_scale = scales[1]
noise_scale_w = scales[2]
audio = model_g.infer(
text,
text_lengths,
noise_scale=noise_scale,
length_scale=length_scale,
noise_scale_w=noise_scale_w,
sid=sid,
)[0].unsqueeze(1)
return audio
model_g.forward = infer_forward
sequences = torch.randint(low=0, high=num_symbols, size=(1, 50), dtype=torch.long)
sequence_lengths = torch.LongTensor([sequences.size(1)])
sid: Optional[int] = None
if num_speakers > 1:
sid = torch.LongTensor([0])
# noise, noise_w, length
scales = torch.FloatTensor([0.667, 1.0, 0.8])
dummy_input = (sequences, sequence_lengths, scales, sid)
# Export
torch.onnx.export(
model=model_g,
args=dummy_input,
f=str(args.output),
verbose=True,
opset_version=OPSET_VERSION,
input_names=["input", "input_lengths", "scales", "sid"],
output_names=["output"],
dynamic_axes={
"input": {0: "batch_size", 1: "phonemes"},
"input_lengths": {0: "batch_size"},
"output": {0: "batch_size", 1: "time"},
},
)
_LOGGER.info("Exported model to %s", args.output)
# -----------------------------------------------------------------------------
if __name__ == "__main__":
main()

@ -0,0 +1,78 @@
#!/usr/bin/env python3
import argparse
import json
import logging
import sys
import time
from pathlib import Path
import torch
from .vits.lightning import VitsModel
from .vits.utils import audio_float_to_int16
from .vits.wavfile import write as write_wav
_LOGGER = logging.getLogger("mimic3_train.infer")
def main():
"""Main entry point"""
logging.basicConfig(level=logging.DEBUG)
parser = argparse.ArgumentParser(prog="mimic3_train.infer")
parser.add_argument(
"--checkpoint", required=True, help="Path to model checkpoint (.ckpt)"
)
parser.add_argument("--output-dir", required=True, help="Path to write WAV files")
parser.add_argument("--sample-rate", type=int, default=22050)
args = parser.parse_args()
args.output_dir = Path(args.output_dir)
args.output_dir.mkdir(parents=True, exist_ok=True)
model = VitsModel.load_from_checkpoint(args.checkpoint)
# Inference only
model.eval()
with torch.no_grad():
model.model_g.dec.remove_weight_norm()
for i, line in enumerate(sys.stdin):
line = line.strip()
if not line:
continue
utt = json.loads(line)
# utt_id = utt["id"]
utt_id = str(i)
phoneme_ids = utt["phoneme_ids"]
text = torch.LongTensor(phoneme_ids).unsqueeze(0)
text_lengths = torch.LongTensor([len(phoneme_ids)])
scales = [0.667, 1.0, 0.8]
start_time = time.perf_counter()
audio = model(text, text_lengths, scales).detach().numpy()
audio = audio_float_to_int16(audio)
end_time = time.perf_counter()
audio_duration_sec = audio.shape[-1] / args.sample_rate
infer_sec = end_time - start_time
real_time_factor = (
infer_sec / audio_duration_sec if audio_duration_sec > 0 else 0.0
)
_LOGGER.debug(
"Real-time factor for %s: %0.2f (infer=%0.2f sec, audio=%0.2f sec)",
i + 1,
real_time_factor,
infer_sec,
audio_duration_sec,
)
output_path = args.output_dir / f"{utt_id}.wav"
write_wav(str(output_path), args.sample_rate, audio)
if __name__ == "__main__":
main()

@ -0,0 +1,189 @@
#!/usr/bin/env python3
import argparse
import json
import logging
import math
import sys
import time
from pathlib import Path
import numpy as np
import onnxruntime
from .vits.utils import audio_float_to_int16
from .vits.wavfile import write as write_wav
_LOGGER = logging.getLogger("mimic3_train.infer_onnx")
def main():
"""Main entry point"""
logging.basicConfig(level=logging.DEBUG)
parser = argparse.ArgumentParser(prog="mimic3_train.infer_onnx")
parser.add_argument("--model", required=True, help="Path to model (.onnx)")
parser.add_argument("--output-dir", required=True, help="Path to write WAV files")
parser.add_argument("--sample-rate", type=int, default=22050)
parser.add_argument("--noise-scale", type=float, default=0.667)
parser.add_argument("--noise-scale-w", type=float, default=0.8)
parser.add_argument("--length-scale", type=float, default=1.0)
args = parser.parse_args()
args.output_dir = Path(args.output_dir)
args.output_dir.mkdir(parents=True, exist_ok=True)
sess_options = onnxruntime.SessionOptions()
_LOGGER.debug("Loading model from %s", args.model)
model = onnxruntime.InferenceSession(str(args.model), sess_options=sess_options)
_LOGGER.info("Loaded model from %s", args.model)
text_empty = np.zeros((1, 300), dtype=np.int64)
text_lengths_empty = np.array([text_empty.shape[1]], dtype=np.int64)
scales = np.array(
[args.noise_scale, args.length_scale, args.noise_scale_w],
dtype=np.float32,
)
bias_audio = model.run(
None,
{"input": text_empty, "input_lengths": text_lengths_empty, "scales": scales},
)[0].squeeze((0, 1))
bias_spec, _ = transform(bias_audio)
for i, line in enumerate(sys.stdin):
line = line.strip()
if not line:
continue
utt = json.loads(line)
# utt_id = utt["id"]
utt_id = str(i)
phoneme_ids = utt["phoneme_ids"]
text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0)
text_lengths = np.array([text.shape[1]], dtype=np.int64)
scales = np.array(
[args.noise_scale, args.length_scale, args.noise_scale_w],
dtype=np.float32,
)
start_time = time.perf_counter()
audio = model.run(
None, {"input": text, "input_lengths": text_lengths, "scales": scales}
)[0].squeeze((0, 1))
audio = denoise(audio, bias_spec, 10)
audio = audio_float_to_int16(audio.squeeze())
end_time = time.perf_counter()
audio_duration_sec = audio.shape[-1] / args.sample_rate
infer_sec = end_time - start_time
real_time_factor = (
infer_sec / audio_duration_sec if audio_duration_sec > 0 else 0.0
)
_LOGGER.debug(
"Real-time factor for %s: %0.2f (infer=%0.2f sec, audio=%0.2f sec)",
i + 1,
real_time_factor,
infer_sec,
audio_duration_sec,
)
output_path = args.output_dir / f"{utt_id}.wav"
write_wav(str(output_path), args.sample_rate, audio)
def denoise(
audio: np.ndarray, bias_spec: np.ndarray, denoiser_strength: float
) -> np.ndarray:
audio_spec, audio_angles = transform(audio)
a = bias_spec.shape[-1]
b = audio_spec.shape[-1]
repeats = max(1, math.ceil(b / a))
bias_spec_repeat = np.repeat(bias_spec, repeats, axis=-1)[..., :b]
audio_spec_denoised = audio_spec - (bias_spec_repeat * denoiser_strength)
audio_spec_denoised = np.clip(audio_spec_denoised, a_min=0.0, a_max=None)
audio_denoised = inverse(audio_spec_denoised, audio_angles)
return audio_denoised
def stft(x, fft_size, hopsamp):
"""Compute and return the STFT of the supplied time domain signal x.
Args:
x (1-dim Numpy array): A time domain signal.
fft_size (int): FFT size. Should be a power of 2, otherwise DFT will be used.
hopsamp (int):
Returns:
The STFT. The rows are the time slices and columns are the frequency bins.
"""
window = np.hanning(fft_size)
fft_size = int(fft_size)
hopsamp = int(hopsamp)
return np.array(
[
np.fft.rfft(window * x[i : i + fft_size])
for i in range(0, len(x) - fft_size, hopsamp)
]
)
def istft(X, fft_size, hopsamp):
"""Invert a STFT into a time domain signal.
Args:
X (2-dim Numpy array): Input spectrogram. The rows are the time slices and columns are the frequency bins.
fft_size (int):
hopsamp (int): The hop size, in samples.
Returns:
The inverse STFT.
"""
fft_size = int(fft_size)
hopsamp = int(hopsamp)
window = np.hanning(fft_size)
time_slices = X.shape[0]
len_samples = int(time_slices * hopsamp + fft_size)
x = np.zeros(len_samples)
for n, i in enumerate(range(0, len(x) - fft_size, hopsamp)):
x[i : i + fft_size] += window * np.real(np.fft.irfft(X[n]))
return x
def inverse(magnitude, phase):
recombine_magnitude_phase = np.concatenate(
[magnitude * np.cos(phase), magnitude * np.sin(phase)], axis=1
)
x_org = recombine_magnitude_phase
n_b, n_f, n_t = x_org.shape # pylint: disable=unpacking-non-sequence
x = np.empty([n_b, n_f // 2, n_t], dtype=np.complex64)
x.real = x_org[:, : n_f // 2]
x.imag = x_org[:, n_f // 2 :]
inverse_transform = []
for y in x:
y_ = istft(y.T, fft_size=1024, hopsamp=256)
inverse_transform.append(y_[None, :])
inverse_transform = np.concatenate(inverse_transform, 0)
return inverse_transform
def transform(input_data):
x = input_data
real_part = []
imag_part = []
for y in x:
y_ = stft(y, fft_size=1024, hopsamp=256).T
real_part.append(y_.real[None, :, :]) # pylint: disable=unsubscriptable-object
imag_part.append(y_.imag[None, :, :]) # pylint: disable=unsubscriptable-object
real_part = np.concatenate(real_part, 0)
imag_part = np.concatenate(imag_part, 0)
magnitude = np.sqrt(real_part**2 + imag_part**2)
phase = np.arctan2(imag_part.data, real_part.data)
return magnitude, phase
if __name__ == "__main__":
main()

@ -0,0 +1,92 @@
from hashlib import sha256
from pathlib import Path
from typing import Optional, Tuple, Union
import librosa
import torch
from larynx_train.vits.mel_processing import spectrogram_torch
from .trim import trim_silence
from .vad import SileroVoiceActivityDetector
_DIR = Path(__file__).parent
def make_silence_detector() -> SileroVoiceActivityDetector:
silence_model = _DIR / "models" / "silero_vad.onnx"
return SileroVoiceActivityDetector(silence_model)
def cache_norm_audio(
audio_path: Union[str, Path],
cache_dir: Union[str, Path],
detector: SileroVoiceActivityDetector,
sample_rate: int,
silence_threshold: float = 0.2,
silence_samples_per_chunk: int = 480,
silence_keep_chunks_before: int = 2,
silence_keep_chunks_after: int = 2,
filter_length: int = 1024,
window_length: int = 1024,
hop_length: int = 256,
ignore_cache: bool = False,
) -> Tuple[Path, Path]:
audio_path = Path(audio_path).absolute()
cache_dir = Path(cache_dir)
# Cache id is the SHA256 of the full audio path
audio_cache_id = sha256(str(audio_path).encode()).hexdigest()
audio_norm_path = cache_dir / f"{audio_cache_id}.pt"
audio_spec_path = cache_dir / f"{audio_cache_id}.spec.pt"
# Normalize audio
audio_norm_tensor: Optional[torch.FloatTensor] = None
if ignore_cache or (not audio_norm_path.exists()):
# Trim silence first.
#
# The VAD model works on 16khz, so we determine the portion of audio
# to keep and then just load that with librosa.
vad_sample_rate = 16000
audio_16khz, _sr = librosa.load(path=audio_path, sr=vad_sample_rate)
offset_sec, duration_sec = trim_silence(
audio_16khz,
detector,
threshold=silence_threshold,
samples_per_chunk=silence_samples_per_chunk,
sample_rate=vad_sample_rate,
keep_chunks_before=silence_keep_chunks_before,
keep_chunks_after=silence_keep_chunks_after,
)
# NOTE: audio is already in [-1, 1] coming from librosa
audio_norm_array, _sr = librosa.load(
path=audio_path,
sr=sample_rate,
offset=offset_sec,
duration=duration_sec,
)
# Save to cache directory
audio_norm_tensor = torch.FloatTensor(audio_norm_array).unsqueeze(0)
torch.save(audio_norm_tensor, audio_norm_path)
# Compute spectrogram
if ignore_cache or (not audio_spec_path.exists()):
if audio_norm_tensor is None:
# Load pre-cached normalized audio
audio_norm_tensor = torch.load(audio_norm_path)
audio_spec_tensor = spectrogram_torch(
y=audio_norm_tensor,
n_fft=filter_length,
sampling_rate=sample_rate,
hop_size=hop_length,
win_size=window_length,
center=False,
).squeeze(0)
torch.save(audio_spec_tensor, audio_spec_path)
return audio_norm_path, audio_spec_path

@ -0,0 +1,54 @@
from typing import Optional, Tuple
import numpy as np
from .vad import SileroVoiceActivityDetector
def trim_silence(
audio_array: np.ndarray,
detector: SileroVoiceActivityDetector,
threshold: float = 0.2,
samples_per_chunk=480,
sample_rate=16000,
keep_chunks_before: int = 2,
keep_chunks_after: int = 2,
) -> Tuple[float, Optional[float]]:
"""Returns the offset/duration of trimmed audio in seconds"""
offset_sec: float = 0.0
duration_sec: Optional[float] = None
first_chunk: Optional[int] = None
last_chunk: Optional[int] = None
seconds_per_chunk: float = samples_per_chunk / sample_rate
chunk = audio_array[:samples_per_chunk]
audio_array = audio_array[samples_per_chunk:]
chunk_idx: int = 0
# Determine main block of speech
while len(audio_array) > 0:
prob = detector(chunk, sample_rate=sample_rate)
is_speech = prob >= threshold
if is_speech:
if first_chunk is None:
# First speech
first_chunk = chunk_idx
else:
# Last speech so far
last_chunk = chunk_idx
chunk = audio_array[:samples_per_chunk]
audio_array = audio_array[samples_per_chunk:]
chunk_idx += 1
if (first_chunk is not None) and (last_chunk is not None):
first_chunk = max(0, first_chunk - keep_chunks_before)
last_chunk = min(chunk_idx, last_chunk + keep_chunks_after)
# Compute offset/duration
offset_sec = first_chunk * seconds_per_chunk
last_sec = (last_chunk + 1) * seconds_per_chunk
duration_sec = last_sec - offset_sec
return offset_sec, duration_sec

@ -0,0 +1,54 @@
import typing
from pathlib import Path
import numpy as np
import onnxruntime
class SileroVoiceActivityDetector:
"""Detects speech/silence using Silero VAD.
https://github.com/snakers4/silero-vad
"""
def __init__(self, onnx_path: typing.Union[str, Path]):
onnx_path = str(onnx_path)
self.session = onnxruntime.InferenceSession(onnx_path)
self.session.intra_op_num_threads = 1
self.session.inter_op_num_threads = 1
self._h = np.zeros((2, 1, 64)).astype("float32")
self._c = np.zeros((2, 1, 64)).astype("float32")
def __call__(self, audio_array: np.ndarray, sample_rate: int = 16000):
"""Return probability of speech in audio [0-1].
Audio must be 16Khz 16-bit mono PCM.
"""
if len(audio_array.shape) == 1:
# Add batch dimension
audio_array = np.expand_dims(audio_array, 0)
if len(audio_array.shape) > 2:
raise ValueError(
f"Too many dimensions for input audio chunk {audio_array.shape}"
)
if audio_array.shape[0] > 1:
raise ValueError("Onnx model does not support batching")
if sample_rate != 16000:
raise ValueError("Only 16Khz audio is supported")
ort_inputs = {
"input": audio_array.astype(np.float32),
"h0": self._h,
"c0": self._c,
}
ort_outs = self.session.run(None, ort_inputs)
out, self._h, self._c = ort_outs
out = out.squeeze(2)[:, 1] # make output type match JIT analog
return out

@ -0,0 +1,166 @@
import unicodedata
from collections import Counter
from typing import Dict, Iterable, List, Mapping, Optional
from espeak_phonemizer import Phonemizer
DEFAULT_PHONEME_ID_MAP: Dict[str, List[int]] = {
"_": [0],
"^": [1],
"$": [2],
" ": [3],
"!": [4],
"'": [5],
"(": [6],
")": [7],
",": [8],
"-": [9],
".": [10],
":": [11],
";": [12],
"?": [13],
"a": [14],
"b": [15],
"c": [16],
"d": [17],
"e": [18],
"f": [19],
"h": [20],
"i": [21],
"j": [22],
"k": [23],
"l": [24],
"m": [25],
"n": [26],
"o": [27],
"p": [28],
"q": [29],
"r": [30],
"s": [31],
"t": [32],
"u": [33],
"v": [34],
"w": [35],
"x": [36],
"y": [37],
"z": [38],
"æ": [39],
"ç": [40],
"ð": [41],
"ø": [42],
"ħ": [43],
"ŋ": [44],
"œ": [45],
"ǀ": [46],
"ǁ": [47],
"ǂ": [48],
"ǃ": [49],
"ɐ": [50],
"ɑ": [51],
"ɒ": [52],
"ɓ": [53],
"ɔ": [54],
"ɕ": [55],
"ɖ": [56],
"ɗ": [57],
"ɘ": [58],
"ə": [59],
"ɚ": [60],
"ɛ": [61],
"ɜ": [62],
"ɞ": [63],
"ɟ": [64],
"ɠ": [65],
"ɡ": [66],
"ɢ": [67],
"ɣ": [68],
"ɤ": [69],
"ɥ": [70],
"ɦ": [71],
"ɧ": [72],
"ɨ": [73],
"ɪ": [74],
"ɫ": [75],
"ɬ": [76],
"ɭ": [77],
"ɮ": [78],
"ɯ": [79],
"ɰ": [80],
"ɱ": [81],
"ɲ": [82],
"ɳ": [83],
"ɴ": [84],
"ɵ": [85],
"ɶ": [86],
"ɸ": [87],
"ɹ": [88],
"ɺ": [89],
"ɻ": [90],
"ɽ": [91],
"ɾ": [92],
"ʀ": [93],
"ʁ": [94],
"ʂ": [95],
"ʃ": [96],
"ʄ": [97],
"ʈ": [98],
"ʉ": [99],
"ʊ": [100],
"ʋ": [101],
"ʌ": [102],
"ʍ": [103],
"ʎ": [104],
"ʏ": [105],
"ʐ": [106],
"ʑ": [107],
"ʒ": [108],
"ʔ": [109],
"ʕ": [110],
"ʘ": [111],
"ʙ": [112],
"ʛ": [113],
"ʜ": [114],
"ʝ": [115],
"ʟ": [116],
"ʡ": [117],
"ʢ": [118],
"ʲ": [119],
"ˈ": [120],
"ˌ": [121],
"ː": [122],
"ˑ": [123],
"˞": [124],
"β": [125],
"θ": [126],
"χ": [127],
"": [128],
"": [129],
}
def phonemize(text: str, phonemizer: Phonemizer) -> List[str]:
phonemes_str = phonemizer.phonemize(text=text, keep_clause_breakers=True)
# Phonemes are decomposed into unicode codepoints
return list(unicodedata.normalize("NFD", phonemes_str))
def phonemes_to_ids(
phonemes: Iterable[str],
phoneme_id_map: Optional[Mapping[str, Iterable[int]]] = None,
missing_phonemes: Optional[Counter[str]] = None,
) -> List[int]:
if phoneme_id_map is None:
phoneme_id_map = DEFAULT_PHONEME_ID_MAP
phoneme_ids: List[int] = []
for phoneme in phonemes:
mapped_phoneme_ids = phoneme_id_map.get(phoneme)
if mapped_phoneme_ids:
phoneme_ids.extend(mapped_phoneme_ids)
elif missing_phonemes is not None:
# Make note of missing phonemes
missing_phonemes[phoneme] += 1
return phoneme_ids

@ -0,0 +1,157 @@
#!/usr/bin/env python3
import argparse
import dataclasses
import itertools
import json
import logging
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Iterable, List, Optional, Set
from espeak_phonemizer import Phonemizer
from .norm_audio import cache_norm_audio, make_silence_detector
from .phonemize import DEFAULT_PHONEME_ID_MAP, phonemes_to_ids, phonemize
_LOGGER = logging.getLogger("preprocess")
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input-dir", required=True, help="Directory with audio dataset"
)
parser.add_argument(
"--output-dir",
required=True,
help="Directory to write output files for training",
)
parser.add_argument("--language", required=True, help="eSpeak-ng voice")
parser.add_argument(
"--sample-rate",
type=int,
required=True,
help="Target sample rate for voice (hertz)",
)
parser.add_argument("--cache-dir", help="Directory to cache processed audio files")
args = parser.parse_args()
logging.basicConfig(level=logging.INFO)
logging.getLogger("numba").setLevel(logging.WARNING)
# Convert to paths and create output directories
args.input_dir = Path(args.input_dir)
args.output_dir = Path(args.output_dir)
args.output_dir.mkdir(parents=True, exist_ok=True)
args.cache_dir = (
Path(args.cache_dir)
if args.cache_dir
else args.output_dir / "cache" / str(args.sample_rate)
)
args.cache_dir.mkdir(parents=True, exist_ok=True)
# Count speakers
_LOGGER.info("Counting number of speakers in the dataset")
speakers: Set[str] = set()
for utt in mycroft_dataset(args.input_dir):
speakers.add(utt.speaker or "")
is_multispeaker = len(speakers) > 1
speaker_ids: Dict[str, int] = {}
if is_multispeaker:
_LOGGER.info("%s speaker(s) detected", len(speakers))
# Assign speaker ids in sorted order
for speaker_id, speaker in enumerate(sorted(speakers)):
speaker_ids[speaker] = speaker_id
else:
_LOGGER.info("Single speaker dataset")
# Write config
with open(args.output_dir / "config.json", "w", encoding="utf-8") as config_file:
json.dump(
{
"audio": {
"sample_rate": args.sample_rate,
},
"espeak": {
"voice": args.language,
},
"inference": {"noise_scale": 0.667, "length_scale": 1, "noise_w": 0.8},
"phoneme_map": {},
"phoneme_id_map": DEFAULT_PHONEME_ID_MAP,
"num_symbols": len(
set(itertools.chain.from_iterable(DEFAULT_PHONEME_ID_MAP.values()))
),
"num_speakers": len(speakers),
"speaker_id_map": speaker_ids,
},
config_file,
ensure_ascii=False,
indent=4,
)
_LOGGER.info("Wrote dataset config")
# Used to trim silence
silence_detector = make_silence_detector()
with open(args.output_dir / "dataset.jsonl", "w", encoding="utf-8") as dataset_file:
phonemizer = Phonemizer(default_voice=args.language)
for utt in mycroft_dataset(args.input_dir):
try:
utt.audio_path = utt.audio_path.absolute()
_LOGGER.debug(utt)
utt.phonemes = phonemize(utt.text, phonemizer)
utt.phoneme_ids = phonemes_to_ids(utt.phonemes)
utt.audio_norm_path, utt.audio_spec_path = cache_norm_audio(
utt.audio_path, args.cache_dir, silence_detector, args.sample_rate
)
# JSONL
json.dump(
dataclasses.asdict(utt),
dataset_file,
ensure_ascii=False,
cls=PathEncoder,
)
print("", file=dataset_file)
except Exception:
_LOGGER.exception("Failed to process utterance: %s", utt)
# -----------------------------------------------------------------------------
@dataclass
class Utterance:
text: str
audio_path: Path
speaker: Optional[str] = None
phonemes: Optional[List[str]] = None
phoneme_ids: Optional[List[int]] = None
audio_norm_path: Optional[Path] = None
audio_spec_path: Optional[Path] = None
class PathEncoder(json.JSONEncoder):
def default(self, o):
if isinstance(o, Path):
return str(o)
return super().default(o)
def mycroft_dataset(dataset_dir: Path) -> Iterable[Utterance]:
for info_path in dataset_dir.glob("*.info"):
wav_path = info_path.with_suffix(".wav")
if wav_path.exists():
text = info_path.read_text(encoding="utf-8").strip()
yield Utterance(text=text, audio_path=wav_path)
# -----------------------------------------------------------------------------
if __name__ == "__main__":
main()

@ -0,0 +1,40 @@
[MESSAGES CONTROL]
disable=
format,
abstract-class-little-used,
abstract-method,
cyclic-import,
duplicate-code,
global-statement,
import-outside-toplevel,
inconsistent-return-statements,
locally-disabled,
not-context-manager,
redefined-variable-type,
too-few-public-methods,
too-many-arguments,
too-many-branches,
too-many-instance-attributes,
too-many-lines,
too-many-locals,
too-many-public-methods,
too-many-return-statements,
too-many-statements,
too-many-boolean-expressions,
unnecessary-pass,
unused-argument,
broad-except,
too-many-nested-blocks,
invalid-name,
unused-import,
no-self-use,
fixme,
useless-super-delegation,
missing-module-docstring,
missing-class-docstring,
missing-function-docstring,
import-error,
relative-beyond-top-level
[FORMAT]
expected-line-ending-format=LF

@ -0,0 +1,22 @@
[flake8]
# To work with Black
max-line-length = 88
# E501: line too long
# W503: Line break occurred before a binary operator
# E203: Whitespace before ':'
# D202 No blank lines allowed after function docstring
# W504 line break after binary operator
ignore =
E501,
W503,
E203,
D202,
W504
[isort]
multi_line_output = 3
include_trailing_comma=True
force_grid_wrap=0
use_parentheses=True
line_length=88
indent = " "

@ -0,0 +1,417 @@
import math
import typing
import torch
from torch import nn
from torch.nn import functional as F
from .commons import subsequent_mask
from .modules import LayerNorm
class Encoder(nn.Module):
def __init__(
self,
hidden_channels: int,
filter_channels: int,
n_heads: int,
n_layers: int,
kernel_size: int = 1,
p_dropout: float = 0.0,
window_size: int = 4,
**kwargs
):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.drop = nn.Dropout(p_dropout)
self.attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
window_size=window_size,
)
)
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(
hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout,
)
)
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.attn_layers[i](x, x, attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class Decoder(nn.Module):
def __init__(
self,
hidden_channels: int,
filter_channels: int,
n_heads: int,
n_layers: int,
kernel_size: int = 1,
p_dropout: float = 0.0,
proximal_bias: bool = False,
proximal_init: bool = True,
**kwargs
):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.drop = nn.Dropout(p_dropout)
self.self_attn_layers = nn.ModuleList()
self.norm_layers_0 = nn.ModuleList()
self.encdec_attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.self_attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
proximal_bias=proximal_bias,
proximal_init=proximal_init,
)
)
self.norm_layers_0.append(LayerNorm(hidden_channels))
self.encdec_attn_layers.append(
MultiHeadAttention(
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
)
)
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(
hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout,
causal=True,
)
)
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask, h, h_mask):
"""
x: decoder input
h: encoder output
"""
self_attn_mask = subsequent_mask(x_mask.size(2)).type_as(x)
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.self_attn_layers[i](x, x, self_attn_mask)
y = self.drop(y)
x = self.norm_layers_0[i](x + y)
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class MultiHeadAttention(nn.Module):
def __init__(
self,
channels: int,
out_channels: int,
n_heads: int,
p_dropout: float = 0.0,
window_size: typing.Optional[int] = None,
heads_share: bool = True,
block_length: typing.Optional[int] = None,
proximal_bias: bool = False,
proximal_init: bool = False,
):
super().__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.p_dropout = p_dropout
self.window_size = window_size
self.heads_share = heads_share
self.block_length = block_length
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = nn.Conv1d(channels, channels, 1)
self.conv_k = nn.Conv1d(channels, channels, 1)
self.conv_v = nn.Conv1d(channels, channels, 1)
self.conv_o = nn.Conv1d(channels, out_channels, 1)
self.drop = nn.Dropout(p_dropout)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
self.emb_rel_v = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
nn.init.xavier_uniform_(self.conv_q.weight)
nn.init.xavier_uniform_(self.conv_k.weight)
nn.init.xavier_uniform_(self.conv_v.weight)
if proximal_init:
with torch.no_grad():
self.conv_k.weight.copy_(self.conv_q.weight)
self.conv_k.bias.copy_(self.conv_q.bias)
def forward(self, x, c, attn_mask=None):
q = self.conv_q(x)
k = self.conv_k(c)
v = self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def attention(self, query, key, value, mask=None):
# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s, t_t = (*key.size(), query.size(2))
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
if self.window_size is not None:
assert (
t_s == t_t
), "Relative attention is only available for self-attention."
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(
query / math.sqrt(self.k_channels), key_relative_embeddings
)
scores_local = self._relative_position_to_absolute_position(rel_logits)
scores = scores + scores_local
if self.proximal_bias:
assert t_s == t_t, "Proximal bias is only available for self-attention."
scores = scores + self._attention_bias_proximal(t_s).type_as(scores)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length is not None:
assert (
t_s == t_t
), "Local attention is only available for self-attention."
block_mask = (
torch.ones_like(scores)
.triu(-self.block_length)
.tril(self.block_length)
)
scores = scores.masked_fill(block_mask == 0, -1e4)
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
p_attn = self.drop(p_attn)
output = torch.matmul(p_attn, value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(
self.emb_rel_v, t_s
)
output = output + self._matmul_with_relative_values(
relative_weights, value_relative_embeddings
)
output = (
output.transpose(2, 3).contiguous().view(b, d, t_t)
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output, p_attn
def _matmul_with_relative_values(self, x, y):
"""
x: [b, h, l, m]
y: [h or 1, m, d]
ret: [b, h, l, d]
"""
ret = torch.matmul(x, y.unsqueeze(0))
return ret
def _matmul_with_relative_keys(self, x, y):
"""
x: [b, h, l, d]
y: [h or 1, m, d]
ret: [b, h, l, m]
"""
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
return ret
def _get_relative_embeddings(self, relative_embeddings, length):
# max_relative_position = 2 * self.window_size + 1
# Pad first before slice to avoid using cond ops.
pad_length = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = F.pad(
relative_embeddings,
# convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
(0, 0, pad_length, pad_length, 0, 0),
)
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[
:, slice_start_position:slice_end_position
]
return used_relative_embeddings
def _relative_position_to_absolute_position(self, x):
"""
x: [b, h, l, 2*l-1]
ret: [b, h, l, l]
"""
batch, heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
# x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
x = F.pad(x, (0, 1, 0, 0, 0, 0, 0, 0))
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch, heads, length * 2 * length])
# x_flat = F.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
x_flat = F.pad(x_flat, (0, length - 1, 0, 0, 0, 0))
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch, heads, length + 1, (2 * length) - 1])[
:, :, :length, length - 1 :
]
return x_final
def _absolute_position_to_relative_position(self, x):
"""
x: [b, h, l, l]
ret: [b, h, l, 2*l-1]
"""
batch, heads, length, _ = x.size()
# padd along column
# x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
x = F.pad(x, (0, length - 1, 0, 0, 0, 0, 0, 0))
x_flat = x.view([batch, heads, (length * length) + (length * (length - 1))])
# add 0's in the beginning that will skew the elements after reshape
# x_flat = F.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
x_flat = F.pad(x_flat, (length, 0, 0, 0, 0, 0))
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
return x_final
def _attention_bias_proximal(self, length):
"""Bias for self-attention to encourage attention to close positions.
Args:
length: an integer scalar.
Returns:
a Tensor with shape [1, 1, length, length]
"""
r = torch.arange(length, dtype=torch.float32)
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
class FFN(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
filter_channels: int,
kernel_size: int,
p_dropout: float = 0.0,
activation: typing.Optional[str] = None,
causal: bool = False,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.activation = activation
self.causal = causal
if causal:
self.padding = self._causal_padding
else:
self.padding = self._same_padding
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
self.drop = nn.Dropout(p_dropout)
def forward(self, x, x_mask):
x = self.conv_1(self.padding(x * x_mask))
if self.activation == "gelu":
x = x * torch.sigmoid(1.702 * x)
else:
x = torch.relu(x)
x = self.drop(x)
x = self.conv_2(self.padding(x * x_mask))
return x * x_mask
def _causal_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = self.kernel_size - 1
pad_r = 0
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
# x = F.pad(x, convert_pad_shape(padding))
x = F.pad(x, (pad_l, pad_r, 0, 0, 0, 0))
return x
def _same_padding(self, x):
if self.kernel_size == 1:
return x
pad_l = (self.kernel_size - 1) // 2
pad_r = self.kernel_size // 2
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
# x = F.pad(x, convert_pad_shape(padding))
x = F.pad(x, (pad_l, pad_r, 0, 0, 0, 0))
return x

@ -0,0 +1,146 @@
import logging
import math
import torch
from torch.nn import functional as F
_LOGGER = logging.getLogger("vits.commons")
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def kl_divergence(m_p, logs_p, m_q, logs_q):
"""KL(P||Q)"""
kl = (logs_q - logs_p) - 0.5
kl += (
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
)
return kl
def rand_gumbel(shape):
"""Sample from the Gumbel distribution, protect from overflows."""
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
return -torch.log(-torch.log(uniform_samples))
def rand_gumbel_like(x):
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
return g
def slice_segments(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :, :segment_size])
for i in range(x.size(0)):
idx_str = max(0, ids_str[i])
idx_end = idx_str + segment_size
ret[i] = x[i, :, idx_str:idx_end]
return ret
def rand_slice_segments(x, x_lengths=None, segment_size=4):
b, d, t = x.size()
if x_lengths is None:
x_lengths = t
ids_str_max = x_lengths - segment_size + 1
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
ret = slice_segments(x, ids_str, segment_size)
return ret, ids_str
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
position = torch.arange(length, dtype=torch.float)
num_timescales = channels // 2
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
num_timescales - 1
)
inv_timescales = min_timescale * torch.exp(
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
)
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
signal = F.pad(signal, [0, 0, 0, channels % 2])
signal = signal.view(1, channels, length)
return signal
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return x + signal.to(dtype=x.dtype, device=x.device)
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
def subsequent_mask(length):
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
return mask
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def generate_path(duration, mask):
"""
duration: [b, 1, t_x]
mask: [b, 1, t_y, t_x]
"""
b, _, t_y, t_x = mask.shape
cum_duration = torch.cumsum(duration, -1)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).type_as(mask)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, (0, 0, 1, 0, 0, 0))[:, :-1]
path = path.unsqueeze(1).transpose(2, 3) * mask
return path
def clip_grad_value_(parameters, clip_value, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
if clip_value is not None:
clip_value = float(clip_value)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
if clip_value is not None:
p.grad.data.clamp_(min=-clip_value, max=clip_value)
total_norm = total_norm ** (1.0 / norm_type)
return total_norm

@ -0,0 +1,330 @@
"""Configuration classes"""
from dataclasses import dataclass, field
from typing import Optional, Tuple
@dataclass
class MelAudioConfig:
filter_length: int = 1024
hop_length: int = 256
win_length: int = 1024
mel_channels: int = 80
sample_rate: int = 22050
sample_bytes: int = 2
channels: int = 1
mel_fmin: float = 0.0
mel_fmax: Optional[float] = None
@dataclass
class ModelAudioConfig:
resblock: str
resblock_kernel_sizes: Tuple[int, ...]
resblock_dilation_sizes: Tuple[Tuple[int, ...], ...]
upsample_rates: Tuple[int, ...]
upsample_initial_channel: int
upsample_kernel_sizes: Tuple[int, ...]
@staticmethod
def low_quality() -> "ModelAudioConfig":
return ModelAudioConfig(
resblock="2",
resblock_kernel_sizes=(3, 5, 7),
resblock_dilation_sizes=(
(1, 2),
(2, 6),
(3, 12),
),
upsample_rates=(8, 8, 4),
upsample_initial_channel=256,
upsample_kernel_sizes=(16, 16, 8),
)
@staticmethod
def high_quality() -> "ModelAudioConfig":
return ModelAudioConfig(
resblock="1",
resblock_kernel_sizes=(3, 7, 11),
resblock_dilation_sizes=(
(1, 3, 5),
(1, 3, 5),
(1, 3, 5),
),
upsample_rates=(8, 8, 2, 2),
upsample_initial_channel=512,
upsample_kernel_sizes=(16, 16, 4, 4),
)
@dataclass
class ModelConfig:
num_symbols: int
n_speakers: int
audio: ModelAudioConfig
mel: MelAudioConfig = field(default_factory=MelAudioConfig)
inter_channels: int = 192
hidden_channels: int = 192
filter_channels: int = 768
n_heads: int = 2
n_layers: int = 6
kernel_size: int = 3
p_dropout: float = 0.1
n_layers_q: int = 3
use_spectral_norm: bool = False
gin_channels: int = 0 # single speaker
use_sdp: bool = True # StochasticDurationPredictor
segment_size: int = 8192
@property
def is_multispeaker(self) -> bool:
return self.n_speakers > 1
@property
def resblock(self) -> str:
return self.audio.resblock
@property
def resblock_kernel_sizes(self) -> Tuple[int, ...]:
return self.audio.resblock_kernel_sizes
@property
def resblock_dilation_sizes(self) -> Tuple[Tuple[int, ...], ...]:
return self.audio.resblock_dilation_sizes
@property
def upsample_rates(self) -> Tuple[int, ...]:
return self.audio.upsample_rates
@property
def upsample_initial_channel(self) -> int:
return self.audio.upsample_initial_channel
@property
def upsample_kernel_sizes(self) -> Tuple[int, ...]:
return self.audio.upsample_kernel_sizes
def __post_init__(self):
if self.is_multispeaker and (self.gin_channels == 0):
self.gin_channels = 512
@dataclass
class TrainingConfig:
learning_rate: float = 2e-4
betas: Tuple[float, float] = field(default=(0.8, 0.99))
eps: float = 1e-9
# batch_size: int = 32
fp16_run: bool = False
lr_decay: float = 0.999875
init_lr_ratio: float = 1.0
warmup_epochs: int = 0
c_mel: int = 45
c_kl: float = 1.0
grad_clip: Optional[float] = None
# @dataclass
# class PhonemesConfig(DataClassJsonMixin):
# phoneme_separator: str = " "
# """Separator between individual phonemes in CSV input"""
# word_separator: str = "#"
# """Separator between word phonemes in CSV input (must not match phoneme_separator)"""
# phoneme_to_id: typing.Optional[typing.Dict[str, int]] = None
# pad: typing.Optional[str] = "_"
# bos: typing.Optional[str] = None
# eos: typing.Optional[str] = None
# blank: typing.Optional[str] = "#"
# blank_word: typing.Optional[str] = None
# blank_between: typing.Union[str, BlankBetween] = BlankBetween.WORDS
# blank_at_start: bool = True
# blank_at_end: bool = True
# simple_punctuation: bool = True
# punctuation_map: typing.Optional[typing.Dict[str, str]] = None
# separate: typing.Optional[typing.List[str]] = None
# separate_graphemes: bool = False
# separate_tones: bool = False
# tone_before: bool = False
# phoneme_map: typing.Optional[typing.Dict[str, typing.List[str]]] = None
# auto_bos_eos: bool = False
# minor_break: typing.Optional[str] = IPA.BREAK_MINOR.value
# major_break: typing.Optional[str] = IPA.BREAK_MAJOR.value
# break_phonemes_into_graphemes: bool = False
# break_phonemes_into_codepoints: bool = False
# drop_stress: bool = False
# symbols: typing.Optional[typing.List[str]] = None
# def split_word_phonemes(self, phonemes_str: str) -> typing.List[typing.List[str]]:
# """Split phonemes string into a list of lists (outer is words, inner is individual phonemes in each word)"""
# return [
# word_phonemes_str.split(self.phoneme_separator)
# if self.phoneme_separator
# else list(word_phonemes_str)
# for word_phonemes_str in phonemes_str.split(self.word_separator)
# ]
# def join_word_phonemes(self, word_phonemes: typing.List[typing.List[str]]) -> str:
# """Split phonemes string into a list of lists (outer is words, inner is individual phonemes in each word)"""
# return self.word_separator.join(
# self.phoneme_separator.join(wp) for wp in word_phonemes
# )
# class Phonemizer(str, Enum):
# SYMBOLS = "symbols"
# GRUUT = "gruut"
# ESPEAK = "espeak"
# EPITRAN = "epitran"
# class Aligner(str, Enum):
# KALDI_ALIGN = "kaldi_align"
# class TextCasing(str, Enum):
# LOWER = "lower"
# UPPER = "upper"
# class MetadataFormat(str, Enum):
# TEXT = "text"
# PHONEMES = "phonemes"
# PHONEME_IDS = "ids"
# @dataclass
# class DatasetConfig:
# name: str
# metadata_format: MetadataFormat = MetadataFormat.TEXT
# multispeaker: bool = False
# text_language: typing.Optional[str] = None
# audio_dir: typing.Optional[typing.Union[str, Path]] = None
# cache_dir: typing.Optional[typing.Union[str, Path]] = None
# def get_cache_dir(self, output_dir: typing.Union[str, Path]) -> Path:
# if self.cache_dir is not None:
# cache_dir = Path(self.cache_dir)
# else:
# cache_dir = Path("cache") / self.name
# if not cache_dir.is_absolute():
# cache_dir = Path(output_dir) / str(cache_dir)
# return cache_dir
# @dataclass
# class AlignerConfig:
# aligner: typing.Optional[Aligner] = None
# casing: typing.Optional[TextCasing] = None
# @dataclass
# class InferenceConfig:
# length_scale: float = 1.0
# noise_scale: float = 0.667
# noise_w: float = 0.8
# @dataclass
# class TrainingConfig(DataClassJsonMixin):
# seed: int = 1234
# epochs: int = 10000
# learning_rate: float = 2e-4
# betas: typing.Tuple[float, float] = field(default=(0.8, 0.99))
# eps: float = 1e-9
# batch_size: int = 32
# fp16_run: bool = False
# lr_decay: float = 0.999875
# segment_size: int = 8192
# init_lr_ratio: float = 1.0
# warmup_epochs: int = 0
# c_mel: int = 45
# c_kl: float = 1.0
# grad_clip: typing.Optional[float] = None
# min_seq_length: typing.Optional[int] = None
# max_seq_length: typing.Optional[int] = None
# min_spec_length: typing.Optional[int] = None
# max_spec_length: typing.Optional[int] = None
# min_speaker_utterances: typing.Optional[int] = None
# last_epoch: int = 1
# global_step: int = 1
# best_loss: typing.Optional[float] = None
# audio: AudioConfig = field(default_factory=AudioConfig)
# model: ModelConfig = field(default_factory=ModelConfig)
# phonemes: PhonemesConfig = field(default_factory=PhonemesConfig)
# text_aligner: AlignerConfig = field(default_factory=AlignerConfig)
# text_language: typing.Optional[str] = None
# phonemizer: typing.Optional[Phonemizer] = None
# datasets: typing.List[DatasetConfig] = field(default_factory=list)
# inference: InferenceConfig = field(default_factory=InferenceConfig)
# version: int = 1
# git_commit: str = ""
# @property
# def is_multispeaker(self):
# return self.model.is_multispeaker or any(d.multispeaker for d in self.datasets)
# def save(self, config_file: typing.TextIO):
# """Save config as JSON to a file"""
# json.dump(self.to_dict(), config_file, indent=4)
# def get_speaker_id(self, dataset_name: str, speaker_name: str) -> int:
# if self.speaker_id_map is None:
# self.speaker_id_map = {}
# full_speaker_name = f"{dataset_name}_{speaker_name}"
# speaker_id = self.speaker_id_map.get(full_speaker_name)
# if speaker_id is None:
# speaker_id = len(self.speaker_id_map)
# self.speaker_id_map[full_speaker_name] = speaker_id
# return speaker_id
# @staticmethod
# def load(config_file: typing.TextIO) -> "TrainingConfig":
# """Load config from a JSON file"""
# return TrainingConfig.from_json(config_file.read())
# @staticmethod
# def load_and_merge(
# config: "TrainingConfig",
# config_files: typing.Iterable[typing.Union[str, Path, typing.TextIO]],
# ) -> "TrainingConfig":
# """Loads one or more JSON configuration files and overlays them on top of an existing config"""
# base_dict = config.to_dict()
# for maybe_config_file in config_files:
# if isinstance(maybe_config_file, (str, Path)):
# # File path
# config_file = open(maybe_config_file, "r", encoding="utf-8")
# else:
# # File object
# config_file = maybe_config_file
# with config_file:
# # Load new config and overlay on existing config
# new_dict = json.load(config_file)
# TrainingConfig.recursive_update(base_dict, new_dict)
# return TrainingConfig.from_dict(base_dict)
# @staticmethod
# def recursive_update(
# base_dict: typing.Dict[typing.Any, typing.Any],
# new_dict: typing.Mapping[typing.Any, typing.Any],
# ) -> None:
# """Recursively overwrites values in base dictionary with values from new dictionary"""
# for key, value in new_dict.items():
# if isinstance(value, collections.Mapping) and (
# base_dict.get(key) is not None
# ):
# TrainingConfig.recursive_update(base_dict[key], value)
# else:
# base_dict[key] = value

@ -0,0 +1,208 @@
import json
import logging
from dataclasses import dataclass
from pathlib import Path
from typing import Iterable, List, Optional, Sequence, Union
import torch
from torch import FloatTensor, LongTensor
from torch.utils.data import Dataset
_LOGGER = logging.getLogger("vits.dataset")
@dataclass
class Utterance:
phoneme_ids: List[int]
audio_norm_path: Path
audio_spec_path: Path
speaker_id: Optional[int] = None
text: Optional[str] = None
@dataclass
class UtteranceTensors:
phoneme_ids: LongTensor
spectrogram: FloatTensor
audio_norm: FloatTensor
speaker_id: Optional[LongTensor] = None
text: Optional[str] = None
@property
def spec_length(self) -> int:
return self.spectrogram.size(1)
@dataclass
class Batch:
phoneme_ids: LongTensor
phoneme_lengths: LongTensor
spectrograms: FloatTensor
spectrogram_lengths: LongTensor
audios: FloatTensor
audio_lengths: LongTensor
speaker_ids: Optional[LongTensor] = None
# @dataclass
# class LarynxDatasetSettings:
# sample_rate: int
# is_multispeaker: bool
# espeak_voice: Optional[str] = None
# phoneme_map: Dict[str, Optional[List[str]]] = field(default_factory=dict)
# phoneme_id_map: Dict[str, List[int]] = DEFAULT_PHONEME_ID_MAP
class LarynxDataset(Dataset):
"""
Dataset format:
* phoneme_ids (required)
* audio_norm_path (required)
* audio_spec_path (required)
* text (optional)
* phonemes (optional)
* audio_path (optional)
"""
def __init__(
self,
dataset_paths: List[Union[str, Path]], # settings: LarynxDatasetSettings
):
# self.settings = settings
self.utterances: List[Utterance] = []
for dataset_path in dataset_paths:
dataset_path = Path(dataset_path)
_LOGGER.debug("Loading dataset: %s", dataset_path)
self.utterances.extend(LarynxDataset.load_dataset(dataset_path))
def __len__(self):
return len(self.utterances)
def __getitem__(self, idx) -> UtteranceTensors:
utt = self.utterances[idx]
return UtteranceTensors(
phoneme_ids=LongTensor(utt.phoneme_ids),
audio_norm=torch.load(utt.audio_norm_path),
spectrogram=torch.load(utt.audio_spec_path),
speaker_id=LongTensor([utt.speaker_id])
if utt.speaker_id is not None
else None,
text=utt.text,
)
@staticmethod
def load_dataset(dataset_path: Path) -> Iterable[Utterance]:
with open(dataset_path, "r", encoding="utf-8") as dataset_file:
for line_idx, line in enumerate(dataset_file):
line = line.strip()
if not line:
continue
try:
yield LarynxDataset.load_utterance(line)
except Exception:
_LOGGER.exception(
"Error on line %s of %s: %s",
line_idx + 1,
dataset_path,
line,
)
@staticmethod
def load_utterance(line: str) -> Utterance:
utt_dict = json.loads(line)
return Utterance(
phoneme_ids=utt_dict["phoneme_ids"],
audio_norm_path=Path(utt_dict["audio_norm_path"]),
audio_spec_path=Path(utt_dict["audio_spec_path"]),
speaker_id=utt_dict.get("speaker_id"),
text=utt_dict.get("text"),
)
class UtteranceCollate:
def __init__(self, is_multispeaker: bool, segment_size: int):
self.is_multispeaker = is_multispeaker
self.segment_size = segment_size
def __call__(self, utterances: Sequence[UtteranceTensors]) -> Batch:
num_utterances = len(utterances)
assert num_utterances > 0, "No utterances"
max_phonemes_length = 0
max_spec_length = 0
max_audio_length = 0
num_mels = 0
# Determine lengths
for utt_idx, utt in enumerate(utterances):
assert utt.spectrogram is not None
assert utt.audio_norm is not None
phoneme_length = utt.phoneme_ids.size(0)
spec_length = utt.spectrogram.size(1)
audio_length = utt.audio_norm.size(1)
max_phonemes_length = max(max_phonemes_length, phoneme_length)
max_spec_length = max(max_spec_length, spec_length)
max_audio_length = max(max_audio_length, audio_length)
num_mels = utt.spectrogram.size(0)
if self.is_multispeaker:
assert utt.speaker_id is not None, "Missing speaker id"
# Audio cannot be smaller than segment size (8192)
max_audio_length = max(max_audio_length, self.segment_size)
# Create padded tensors
phonemes_padded = LongTensor(num_utterances, max_phonemes_length)
spec_padded = FloatTensor(num_utterances, num_mels, max_spec_length)
audio_padded = FloatTensor(num_utterances, 1, max_audio_length)
phonemes_padded.zero_()
spec_padded.zero_()
audio_padded.zero_()
phoneme_lengths = LongTensor(num_utterances)
spec_lengths = LongTensor(num_utterances)
audio_lengths = LongTensor(num_utterances)
speaker_ids: Optional[LongTensor] = None
if self.is_multispeaker:
speaker_ids = LongTensor(num_utterances)
# Sort by decreasing spectrogram length
sorted_utterances = sorted(
utterances, key=lambda u: u.spectrogram.size(1), reverse=True
)
for utt_idx, utt in enumerate(sorted_utterances):
phoneme_length = utt.phoneme_ids.size(0)
spec_length = utt.spectrogram.size(1)
audio_length = utt.audio_norm.size(1)
phonemes_padded[utt_idx, :phoneme_length] = utt.phoneme_ids
phoneme_lengths[utt_idx] = phoneme_length
spec_padded[utt_idx, :, :spec_length] = utt.spectrogram
spec_lengths[utt_idx] = spec_length
audio_padded[utt_idx, :, :audio_length] = utt.audio_norm
audio_lengths[utt_idx] = audio_length
if utt.speaker_id is not None:
assert speaker_ids is not None
speaker_ids[utt_idx] = utt.speaker_id
return Batch(
phoneme_ids=phonemes_padded,
phoneme_lengths=phoneme_lengths,
spectrograms=spec_padded,
spectrogram_lengths=spec_lengths,
audios=audio_padded,
audio_lengths=audio_lengths,
speaker_ids=speaker_ids,
)

@ -0,0 +1,330 @@
import logging
from pathlib import Path
from typing import List, Optional, Tuple, Union
import pytorch_lightning as pl
import torch
from torch import autocast
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset, random_split
from .commons import slice_segments
from .dataset import Batch, LarynxDataset, UtteranceCollate
from .losses import discriminator_loss, feature_loss, generator_loss, kl_loss
from .mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from .models import MultiPeriodDiscriminator, SynthesizerTrn
_LOGGER = logging.getLogger("vits.lightning")
class VitsModel(pl.LightningModule):
def __init__(
self,
num_symbols: int,
num_speakers: int,
# audio
resblock="2",
resblock_kernel_sizes=(3, 5, 7),
resblock_dilation_sizes=(
(1, 2),
(2, 6),
(3, 12),
),
upsample_rates=(8, 8, 4),
upsample_initial_channel=256,
upsample_kernel_sizes=(16, 16, 8),
# mel
filter_length: int = 1024,
hop_length: int = 256,
win_length: int = 1024,
mel_channels: int = 80,
sample_rate: int = 22050,
sample_bytes: int = 2,
channels: int = 1,
mel_fmin: float = 0.0,
mel_fmax: Optional[float] = None,
# model
inter_channels: int = 192,
hidden_channels: int = 192,
filter_channels: int = 768,
n_heads: int = 2,
n_layers: int = 6,
kernel_size: int = 3,
p_dropout: float = 0.1,
n_layers_q: int = 3,
use_spectral_norm: bool = False,
gin_channels: int = 0,
use_sdp: bool = True,
segment_size: int = 8192,
# training
dataset: Optional[List[Union[str, Path]]] = None,
learning_rate: float = 2e-4,
betas: Tuple[float, float] = (0.8, 0.99),
eps: float = 1e-9,
batch_size: int = 1,
lr_decay: float = 0.999875,
init_lr_ratio: float = 1.0,
warmup_epochs: int = 0,
c_mel: int = 45,
c_kl: float = 1.0,
grad_clip: Optional[float] = None,
num_workers: int = 1,
seed: int = 1234,
num_test_examples: int = 5,
validation_split: float = 0.1,
**kwargs
):
super().__init__()
self.save_hyperparameters()
if (self.hparams.num_speakers > 1) and (self.hparams.gin_channels <= 0):
# Default gin_channels for multi-speaker model
self.hparams.gin_channels = 512
# Set up models
self.model_g = SynthesizerTrn(
n_vocab=self.hparams.num_symbols,
spec_channels=self.hparams.filter_length // 2 + 1,
segment_size=self.hparams.segment_size // self.hparams.hop_length,
inter_channels=self.hparams.inter_channels,
hidden_channels=self.hparams.hidden_channels,
filter_channels=self.hparams.filter_channels,
n_heads=self.hparams.n_heads,
n_layers=self.hparams.n_layers,
kernel_size=self.hparams.kernel_size,
p_dropout=self.hparams.p_dropout,
resblock=self.hparams.resblock,
resblock_kernel_sizes=self.hparams.resblock_kernel_sizes,
resblock_dilation_sizes=self.hparams.resblock_dilation_sizes,
upsample_rates=self.hparams.upsample_rates,
upsample_initial_channel=self.hparams.upsample_initial_channel,
upsample_kernel_sizes=self.hparams.upsample_kernel_sizes,
n_speakers=self.hparams.num_speakers,
gin_channels=self.hparams.gin_channels,
use_sdp=self.hparams.use_sdp,
)
self.model_d = MultiPeriodDiscriminator(
use_spectral_norm=self.hparams.use_spectral_norm
)
# Dataset splits
self._train_dataset: Optional[Dataset] = None
self._val_dataset: Optional[Dataset] = None
self._test_dataset: Optional[Dataset] = None
self._load_datasets(validation_split, num_test_examples)
# State kept between training optimizers
self._y = None
self._y_hat = None
def _load_datasets(self, validation_split: float, num_test_examples: int):
full_dataset = LarynxDataset(self.hparams.dataset)
valid_set_size = int(len(full_dataset) * validation_split)
train_set_size = len(full_dataset) - valid_set_size - num_test_examples
self._train_dataset, self._test_dataset, self._val_dataset = random_split(
full_dataset, [train_set_size, num_test_examples, valid_set_size]
)
def forward(self, text, text_lengths, scales, sid=None):
noise_scale = scales[0]
length_scale = scales[1]
noise_scale_w = scales[2]
audio, *_ = self.model_g.infer(
text,
text_lengths,
noise_scale=noise_scale,
length_scale=length_scale,
noise_scale_w=noise_scale_w,
sid=sid,
)
return audio
def train_dataloader(self):
return DataLoader(
self._train_dataset,
collate_fn=UtteranceCollate(
is_multispeaker=self.hparams.num_speakers > 1,
segment_size=self.hparams.segment_size,
),
num_workers=self.hparams.num_workers,
batch_size=self.hparams.batch_size,
)
def val_dataloader(self):
return DataLoader(
self._val_dataset,
collate_fn=UtteranceCollate(
is_multispeaker=self.hparams.num_speakers > 1,
segment_size=self.hparams.segment_size,
),
num_workers=self.hparams.num_workers,
batch_size=self.hparams.batch_size,
)
def test_dataloader(self):
return DataLoader(
self._test_dataset,
collate_fn=UtteranceCollate(
is_multispeaker=self.hparams.num_speakers > 1,
segment_size=self.hparams.segment_size,
),
num_workers=self.hparams.num_workers,
batch_size=self.hparams.batch_size,
)
def training_step(self, batch: Batch, batch_idx: int, optimizer_idx: int):
if optimizer_idx == 0:
return self.training_step_g(batch)
if optimizer_idx == 1:
return self.training_step_d(batch)
def training_step_g(self, batch: Batch):
x, x_lengths, y, _, spec, spec_lengths, speaker_ids = (
batch.phoneme_ids,
batch.phoneme_lengths,
batch.audios,
batch.audio_lengths,
batch.spectrograms,
batch.spectrogram_lengths,
batch.speaker_ids if batch.speaker_ids is not None else None,
)
(
y_hat,
l_length,
_attn,
ids_slice,
_x_mask,
z_mask,
(_z, z_p, m_p, logs_p, _m_q, logs_q),
) = self.model_g(x, x_lengths, spec, spec_lengths, speaker_ids)
self._y_hat = y_hat
mel = spec_to_mel_torch(
spec,
self.hparams.filter_length,
self.hparams.mel_channels,
self.hparams.sample_rate,
self.hparams.mel_fmin,
self.hparams.mel_fmax,
)
y_mel = slice_segments(
mel,
ids_slice,
self.hparams.segment_size // self.hparams.hop_length,
)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
self.hparams.filter_length,
self.hparams.mel_channels,
self.hparams.sample_rate,
self.hparams.hop_length,
self.hparams.win_length,
self.hparams.mel_fmin,
self.hparams.mel_fmax,
)
y = slice_segments(
y,
ids_slice * self.hparams.hop_length,
self.hparams.segment_size,
) # slice
# Save for training_step_d
self._y = y
_y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = self.model_d(y, y_hat)
with autocast(self.device.type, enabled=False):
# Generator loss
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(y_mel, y_hat_mel) * self.hparams.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * self.hparams.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, _losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
self.log("loss_gen_all", loss_gen_all)
return loss_gen_all
def training_step_d(self, batch: Batch):
# From training_step_g
y = self._y
y_hat = self._y_hat
y_d_hat_r, y_d_hat_g, _, _ = self.model_d(y, y_hat.detach())
with autocast(self.device.type, enabled=False):
# Discriminator
loss_disc, _losses_disc_r, _losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g
)
loss_disc_all = loss_disc
self.log("loss_disc_all", loss_disc_all)
return loss_disc_all
def validation_step(self, batch: Batch, batch_idx: int):
val_loss = self.training_step_g(batch)
self.log("val_loss", val_loss)
# Generate audio examples
for utt_idx, test_utt in enumerate(self._test_dataset):
text = test_utt.phoneme_ids.unsqueeze(0).to(self.device)
text_lengths = torch.LongTensor([len(test_utt.phoneme_ids)]).to(self.device)
scales = [0.667, 1.0, 0.8]
test_audio = self(text, text_lengths, scales).detach()
# Scale to make louder in [-1, 1]
test_audio = test_audio * (1.0 / max(0.01, abs(test_audio.max())))
tag = test_utt.text or str(utt_idx)
self.logger.experiment.add_audio(
tag, test_audio, sample_rate=self.hparams.sample_rate
)
return val_loss
def configure_optimizers(self):
optimizers = [
torch.optim.AdamW(
self.model_g.parameters(),
lr=self.hparams.learning_rate,
betas=self.hparams.betas,
eps=self.hparams.eps,
),
torch.optim.AdamW(
self.model_d.parameters(),
lr=self.hparams.learning_rate,
betas=self.hparams.betas,
eps=self.hparams.eps,
),
]
schedulers = [
torch.optim.lr_scheduler.ExponentialLR(
optimizers[0], gamma=self.hparams.lr_decay
),
torch.optim.lr_scheduler.ExponentialLR(
optimizers[1], gamma=self.hparams.lr_decay
),
]
return optimizers, schedulers
@staticmethod
def add_model_specific_args(parent_parser):
parser = parent_parser.add_argument_group("VitsModel")
parser.add_argument("--batch-size", type=int, required=True)
parser.add_argument("--validation-split", type=float, default=0.1)
parser.add_argument("--num-test-examples", type=int, default=5)
#
parser.add_argument("--hidden-channels", type=int, default=192)
parser.add_argument("--inter-channels", type=int, default=192)
parser.add_argument("--filter-channels", type=int, default=768)
parser.add_argument("--n-layers", type=int, default=6)
parser.add_argument("--n-heads", type=int, default=2)
#
return parent_parser

@ -0,0 +1,58 @@
import torch
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
rl = rl.float().detach()
gl = gl.float()
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
dr = dr.float()
dg = dg.float()
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg**2)
loss += r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
dg = dg.float()
l_dg = torch.mean((1 - dg) ** 2)
gen_losses.append(l_dg)
loss += l_dg
return loss, gen_losses
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
"""
z_p, logs_q: [b, h, t_t]
m_p, logs_p: [b, h, t_t]
"""
z_p = z_p.float()
logs_q = logs_q.float()
m_p = m_p.float()
logs_p = logs_p.float()
z_mask = z_mask.float()
kl = logs_p - logs_q - 0.5
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
kl = torch.sum(kl * z_mask)
l_kl = kl / torch.sum(z_mask)
return l_kl

@ -0,0 +1,137 @@
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
MAX_WAV_VALUE = 32768.0
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
"""
PARAMS
------
C: compression factor
"""
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
"""
PARAMS
------
C: compression factor used to compress
"""
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
if torch.min(y) < -1.0:
print("min value is ", torch.min(y))
if torch.max(y) > 1.0:
print("max value is ", torch.max(y))
global hann_window
dtype_device = str(y.dtype) + "_" + str(y.device)
wnsize_dtype_device = str(win_size) + "_" + dtype_device
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).type_as(y)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.view_as_real(
torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[wnsize_dtype_device],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
global mel_basis
dtype_device = str(spec.dtype) + "_" + str(spec.device)
fmax_dtype_device = str(fmax) + "_" + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).type_as(spec)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = spectral_normalize_torch(spec)
return spec
def mel_spectrogram_torch(
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
):
if torch.min(y) < -1.0:
print("min value is ", torch.min(y))
if torch.max(y) > 1.0:
print("max value is ", torch.max(y))
global mel_basis, hann_window
dtype_device = str(y.dtype) + "_" + str(y.device)
fmax_dtype_device = str(fmax) + "_" + dtype_device
wnsize_dtype_device = str(win_size) + "_" + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).type_as(y)
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).type_as(y)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
spec = torch.view_as_real(
torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[wnsize_dtype_device],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = spectral_normalize_torch(spec)
return spec

@ -0,0 +1,727 @@
import math
import typing
import torch
from torch import nn
from torch.nn import Conv1d, Conv2d, ConvTranspose1d
from torch.nn import functional as F
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
from . import attentions, commons, modules, monotonic_align
from .commons import get_padding, init_weights
class StochasticDurationPredictor(nn.Module):
def __init__(
self,
in_channels: int,
filter_channels: int,
kernel_size: int,
p_dropout: float,
n_flows: int = 4,
gin_channels: int = 0,
):
super().__init__()
filter_channels = in_channels # it needs to be removed from future version.
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.n_flows = n_flows
self.gin_channels = gin_channels
self.log_flow = modules.Log()
self.flows = nn.ModuleList()
self.flows.append(modules.ElementwiseAffine(2))
for i in range(n_flows):
self.flows.append(
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
)
self.flows.append(modules.Flip())
self.post_pre = nn.Conv1d(1, filter_channels, 1)
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.post_convs = modules.DDSConv(
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
)
self.post_flows = nn.ModuleList()
self.post_flows.append(modules.ElementwiseAffine(2))
for i in range(4):
self.post_flows.append(
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
)
self.post_flows.append(modules.Flip())
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.convs = modules.DDSConv(
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
x = torch.detach(x)
x = self.pre(x)
if g is not None:
g = torch.detach(g)
x = x + self.cond(g)
x = self.convs(x, x_mask)
x = self.proj(x) * x_mask
if not reverse:
flows = self.flows
assert w is not None
logdet_tot_q = 0
h_w = self.post_pre(w)
h_w = self.post_convs(h_w, x_mask)
h_w = self.post_proj(h_w) * x_mask
e_q = torch.randn(w.size(0), 2, w.size(2)).type_as(x) * x_mask
z_q = e_q
for flow in self.post_flows:
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
logdet_tot_q += logdet_q
z_u, z1 = torch.split(z_q, [1, 1], 1)
u = torch.sigmoid(z_u) * x_mask
z0 = (w - u) * x_mask
logdet_tot_q += torch.sum(
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
)
logq = (
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
- logdet_tot_q
)
logdet_tot = 0
z0, logdet = self.log_flow(z0, x_mask)
logdet_tot += logdet
z = torch.cat([z0, z1], 1)
for flow in flows:
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
logdet_tot = logdet_tot + logdet
nll = (
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
- logdet_tot
)
return nll + logq # [b]
else:
flows = list(reversed(self.flows))
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
z = torch.randn(x.size(0), 2, x.size(2)).type_as(x) * noise_scale
for flow in flows:
z = flow(z, x_mask, g=x, reverse=reverse)
z0, z1 = torch.split(z, [1, 1], 1)
logw = z0
return logw
class DurationPredictor(nn.Module):
def __init__(
self,
in_channels: int,
filter_channels: int,
kernel_size: int,
p_dropout: float,
gin_channels: int = 0,
):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.gin_channels = gin_channels
self.drop = nn.Dropout(p_dropout)
self.conv_1 = nn.Conv1d(
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
)
self.norm_1 = modules.LayerNorm(filter_channels)
self.conv_2 = nn.Conv1d(
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
)
self.norm_2 = modules.LayerNorm(filter_channels)
self.proj = nn.Conv1d(filter_channels, 1, 1)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
def forward(self, x, x_mask, g=None):
x = torch.detach(x)
if g is not None:
g = torch.detach(g)
x = x + self.cond(g)
x = self.conv_1(x * x_mask)
x = torch.relu(x)
x = self.norm_1(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
x = torch.relu(x)
x = self.norm_2(x)
x = self.drop(x)
x = self.proj(x * x_mask)
return x * x_mask
class TextEncoder(nn.Module):
def __init__(
self,
n_vocab: int,
out_channels: int,
hidden_channels: int,
filter_channels: int,
n_heads: int,
n_layers: int,
kernel_size: int,
p_dropout: float,
):
super().__init__()
self.n_vocab = n_vocab
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.emb = nn.Embedding(n_vocab, hidden_channels)
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
self.encoder = attentions.Encoder(
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths):
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(
commons.sequence_mask(x_lengths, x.size(2)), 1
).type_as(x)
x = self.encoder(x * x_mask, x_mask)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return x, m, logs, x_mask
class ResidualCouplingBlock(nn.Module):
def __init__(
self,
channels: int,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
n_layers: int,
n_flows: int = 4,
gin_channels: int = 0,
):
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = nn.ModuleList()
for i in range(n_flows):
self.flows.append(
modules.ResidualCouplingLayer(
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
mean_only=True,
)
)
self.flows.append(modules.Flip())
def forward(self, x, x_mask, g=None, reverse=False):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow(x, x_mask, g=g, reverse=reverse)
return x
class PosteriorEncoder(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
n_layers: int,
gin_channels: int = 0,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = modules.WN(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x, x_lengths, g=None):
x_mask = torch.unsqueeze(
commons.sequence_mask(x_lengths, x.size(2)), 1
).type_as(x)
x = self.pre(x) * x_mask
x = self.enc(x, x_mask, g=g)
stats = self.proj(x) * x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
return z, m, logs, x_mask
class Generator(torch.nn.Module):
def __init__(
self,
initial_channel: int,
resblock: typing.Optional[str],
resblock_kernel_sizes: typing.Tuple[int, ...],
resblock_dilation_sizes: typing.Tuple[typing.Tuple[int, ...], ...],
upsample_rates: typing.Tuple[int, ...],
upsample_initial_channel: int,
upsample_kernel_sizes: typing.Tuple[int, ...],
gin_channels: int = 0,
):
super(Generator, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.conv_pre = Conv1d(
initial_channel, upsample_initial_channel, 7, 1, padding=3
)
resblock_module = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm(
ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(
zip(resblock_kernel_sizes, resblock_dilation_sizes)
):
self.resblocks.append(resblock_module(ch, k, d))
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
self.ups.apply(init_weights)
if gin_channels != 0:
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x, g=None):
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, modules.LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print("Removing weight norm...")
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
class DiscriminatorP(torch.nn.Module):
def __init__(
self,
period: int,
kernel_size: int = 5,
stride: int = 3,
use_spectral_norm: bool = False,
):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if not use_spectral_norm else spectral_norm
self.convs = nn.ModuleList(
[
norm_f(
Conv2d(
1,
32,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
32,
128,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
128,
512,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
512,
1024,
(kernel_size, 1),
(stride, 1),
padding=(get_padding(kernel_size, 1), 0),
)
),
norm_f(
Conv2d(
1024,
1024,
(kernel_size, 1),
1,
padding=(get_padding(kernel_size, 1), 0),
)
),
]
)
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = spectral_norm if use_spectral_norm else weight_norm
self.convs = nn.ModuleList(
[
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
]
)
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, modules.LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(MultiPeriodDiscriminator, self).__init__()
periods = [2, 3, 5, 7, 11]
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
discs = discs + [
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
]
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class SynthesizerTrn(nn.Module):
"""
Synthesizer for Training
"""
def __init__(
self,
n_vocab: int,
spec_channels: int,
segment_size: int,
inter_channels: int,
hidden_channels: int,
filter_channels: int,
n_heads: int,
n_layers: int,
kernel_size: int,
p_dropout: float,
resblock: str,
resblock_kernel_sizes: typing.Tuple[int, ...],
resblock_dilation_sizes: typing.Tuple[typing.Tuple[int, ...], ...],
upsample_rates: typing.Tuple[int, ...],
upsample_initial_channel: int,
upsample_kernel_sizes: typing.Tuple[int, ...],
n_speakers: int = 1,
gin_channels: int = 0,
use_sdp: bool = True,
):
super().__init__()
self.n_vocab = n_vocab
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.n_speakers = n_speakers
self.gin_channels = gin_channels
self.use_sdp = use_sdp
self.enc_p = TextEncoder(
n_vocab,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
)
self.dec = Generator(
inter_channels,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=gin_channels,
)
self.enc_q = PosteriorEncoder(
spec_channels,
inter_channels,
hidden_channels,
5,
1,
16,
gin_channels=gin_channels,
)
self.flow = ResidualCouplingBlock(
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels
)
if use_sdp:
self.dp = StochasticDurationPredictor(
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
)
else:
self.dp = DurationPredictor(
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
)
if n_speakers > 1:
self.emb_g = nn.Embedding(n_speakers, gin_channels)
def forward(self, x, x_lengths, y, y_lengths, sid=None):
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
if self.n_speakers > 1:
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
else:
g = None
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
z_p = self.flow(z, y_mask, g=g)
with torch.no_grad():
# negative cross-entropy
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
neg_cent1 = torch.sum(
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
) # [b, 1, t_s]
neg_cent2 = torch.matmul(
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
neg_cent3 = torch.matmul(
z_p.transpose(1, 2), (m_p * s_p_sq_r)
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
neg_cent4 = torch.sum(
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
) # [b, 1, t_s]
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
attn = (
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
.unsqueeze(1)
.detach()
)
w = attn.sum(2)
if self.use_sdp:
l_length = self.dp(x, x_mask, w, g=g)
l_length = l_length / torch.sum(x_mask)
else:
logw_ = torch.log(w + 1e-6) * x_mask
logw = self.dp(x, x_mask, g=g)
l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
x_mask
) # for averaging
# expand prior
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
z_slice, ids_slice = commons.rand_slice_segments(
z, y_lengths, self.segment_size
)
o = self.dec(z_slice, g=g)
return (
o,
l_length,
attn,
ids_slice,
x_mask,
y_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
)
def infer(
self,
x,
x_lengths,
sid=None,
noise_scale=0.667,
length_scale=1,
noise_scale_w=0.8,
max_len=None,
):
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
if self.n_speakers > 1:
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
else:
g = None
if self.use_sdp:
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
else:
logw = self.dp(x, x_mask, g=g)
w = torch.exp(logw) * x_mask * length_scale
w_ceil = torch.ceil(w)
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_mask = torch.unsqueeze(
commons.sequence_mask(y_lengths, y_lengths.max()), 1
).type_as(x_mask)
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
attn = commons.generate_path(w_ceil, attn_mask)
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
1, 2
) # [b, t', t], [b, t, d] -> [b, d, t']
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
1, 2
) # [b, t', t], [b, t, d] -> [b, d, t']
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
z = self.flow(z_p, y_mask, g=g, reverse=True)
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
return o, attn, y_mask, (z, z_p, m_p, logs_p)
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
assert self.n_speakers > 1, "n_speakers have to be larger than 1."
g_src = self.emb_g(sid_src).unsqueeze(-1)
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
z_p = self.flow(z, y_mask, g=g_src)
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
return o_hat, y_mask, (z, z_p, z_hat)

@ -0,0 +1,527 @@
import math
import typing
import torch
from torch import nn
from torch.nn import Conv1d
from torch.nn import functional as F
from torch.nn.utils import remove_weight_norm, weight_norm
from .commons import fused_add_tanh_sigmoid_multiply, get_padding, init_weights
from .transforms import piecewise_rational_quadratic_transform
LRELU_SLOPE = 0.1
class LayerNorm(nn.Module):
def __init__(self, channels: int, eps: float = 1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class ConvReluNorm(nn.Module):
def __init__(
self,
in_channels: int,
hidden_channels: int,
out_channels: int,
kernel_size: int,
n_layers: int,
p_dropout: float,
):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
assert n_layers > 1, "Number of layers should be larger than 0."
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.conv_layers.append(
nn.Conv1d(
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
)
)
self.norm_layers.append(LayerNorm(hidden_channels))
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
for _ in range(n_layers - 1):
self.conv_layers.append(
nn.Conv1d(
hidden_channels,
hidden_channels,
kernel_size,
padding=kernel_size // 2,
)
)
self.norm_layers.append(LayerNorm(hidden_channels))
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask):
x_org = x
for i in range(self.n_layers):
x = self.conv_layers[i](x * x_mask)
x = self.norm_layers[i](x)
x = self.relu_drop(x)
x = x_org + self.proj(x)
return x * x_mask
class DDSConv(nn.Module):
"""
Dialted and Depth-Separable Convolution
"""
def __init__(
self, channels: int, kernel_size: int, n_layers: int, p_dropout: float = 0.0
):
super().__init__()
self.channels = channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
self.drop = nn.Dropout(p_dropout)
self.convs_sep = nn.ModuleList()
self.convs_1x1 = nn.ModuleList()
self.norms_1 = nn.ModuleList()
self.norms_2 = nn.ModuleList()
for i in range(n_layers):
dilation = kernel_size**i
padding = (kernel_size * dilation - dilation) // 2
self.convs_sep.append(
nn.Conv1d(
channels,
channels,
kernel_size,
groups=channels,
dilation=dilation,
padding=padding,
)
)
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
self.norms_1.append(LayerNorm(channels))
self.norms_2.append(LayerNorm(channels))
def forward(self, x, x_mask, g=None):
if g is not None:
x = x + g
for i in range(self.n_layers):
y = self.convs_sep[i](x * x_mask)
y = self.norms_1[i](y)
y = F.gelu(y)
y = self.convs_1x1[i](y)
y = self.norms_2[i](y)
y = F.gelu(y)
y = self.drop(y)
x = x + y
return x * x_mask
class WN(torch.nn.Module):
def __init__(
self,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
n_layers: int,
gin_channels: int = 0,
p_dropout: float = 0,
):
super().__init__()
assert kernel_size % 2 == 1
self.hidden_channels = hidden_channels
self.kernel_size = (kernel_size,)
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.p_dropout = p_dropout
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.drop = nn.Dropout(p_dropout)
if gin_channels != 0:
cond_layer = torch.nn.Conv1d(
gin_channels, 2 * hidden_channels * n_layers, 1
)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
for i in range(n_layers):
dilation = dilation_rate**i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(
hidden_channels,
2 * hidden_channels,
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * hidden_channels
else:
res_skip_channels = hidden_channels
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
self.res_skip_layers.append(res_skip_layer)
def forward(self, x, x_mask, g=None, **kwargs):
output = torch.zeros_like(x)
n_channels_tensor = torch.IntTensor([self.hidden_channels])
if g is not None:
g = self.cond_layer(g)
for i in range(self.n_layers):
x_in = self.in_layers[i](x)
if g is not None:
cond_offset = i * 2 * self.hidden_channels
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
else:
g_l = torch.zeros_like(x_in)
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
acts = self.drop(acts)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
res_acts = res_skip_acts[:, : self.hidden_channels, :]
x = (x + res_acts) * x_mask
output = output + res_skip_acts[:, self.hidden_channels :, :]
else:
output = output + res_skip_acts
return output * x_mask
def remove_weight_norm(self):
if self.gin_channels != 0:
torch.nn.utils.remove_weight_norm(self.cond_layer)
for l in self.in_layers:
torch.nn.utils.remove_weight_norm(l)
for l in self.res_skip_layers:
torch.nn.utils.remove_weight_norm(l)
class ResBlock1(torch.nn.Module):
def __init__(
self,
channels: int,
kernel_size: int = 3,
dilation: typing.Tuple[int] = (1, 3, 5),
):
super(ResBlock1, self).__init__()
self.convs1 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
]
)
self.convs2.apply(init_weights)
def forward(self, x, x_mask=None):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c2(xt)
x = xt + x
if x_mask is not None:
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(
self, channels: int, kernel_size: int = 3, dilation: typing.Tuple[int] = (1, 3)
):
super(ResBlock2, self).__init__()
self.convs = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
]
)
self.convs.apply(init_weights)
def forward(self, x, x_mask=None):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c(xt)
x = xt + x
if x_mask is not None:
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Log(nn.Module):
def forward(
self, x: torch.Tensor, x_mask: torch.Tensor, reverse: bool = False, **kwargs
):
if not reverse:
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
logdet = torch.sum(-y, [1, 2])
return y, logdet
else:
x = torch.exp(x) * x_mask
return x
class Flip(nn.Module):
def forward(self, x: torch.Tensor, *args, reverse: bool = False, **kwargs):
x = torch.flip(x, [1])
if not reverse:
logdet = torch.zeros(x.size(0)).type_as(x)
return x, logdet
else:
return x
class ElementwiseAffine(nn.Module):
def __init__(self, channels: int):
super().__init__()
self.channels = channels
self.m = nn.Parameter(torch.zeros(channels, 1))
self.logs = nn.Parameter(torch.zeros(channels, 1))
def forward(self, x, x_mask, reverse=False, **kwargs):
if not reverse:
y = self.m + torch.exp(self.logs) * x
y = y * x_mask
logdet = torch.sum(self.logs * x_mask, [1, 2])
return y, logdet
else:
x = (x - self.m) * torch.exp(-self.logs) * x_mask
return x
class ResidualCouplingLayer(nn.Module):
def __init__(
self,
channels: int,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
n_layers: int,
p_dropout: float = 0,
gin_channels: int = 0,
mean_only: bool = False,
):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.half_channels = channels // 2
self.mean_only = mean_only
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
self.enc = WN(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=p_dropout,
gin_channels=gin_channels,
)
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
self.post.weight.data.zero_()
self.post.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
h = self.pre(x0) * x_mask
h = self.enc(h, x_mask, g=g)
stats = self.post(h) * x_mask
if not self.mean_only:
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
else:
m = stats
logs = torch.zeros_like(m)
if not reverse:
x1 = m + x1 * torch.exp(logs) * x_mask
x = torch.cat([x0, x1], 1)
logdet = torch.sum(logs, [1, 2])
return x, logdet
else:
x1 = (x1 - m) * torch.exp(-logs) * x_mask
x = torch.cat([x0, x1], 1)
return x
class ConvFlow(nn.Module):
def __init__(
self,
in_channels: int,
filter_channels: int,
kernel_size: int,
n_layers: int,
num_bins: int = 10,
tail_bound: float = 5.0,
):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.num_bins = num_bins
self.tail_bound = tail_bound
self.half_channels = in_channels // 2
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
self.proj = nn.Conv1d(
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
h = self.pre(x0)
h = self.convs(h, x_mask, g=g)
h = self.proj(h) * x_mask
b, c, t = x0.shape
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
self.filter_channels
)
unnormalized_derivatives = h[..., 2 * self.num_bins :]
x1, logabsdet = piecewise_rational_quadratic_transform(
x1,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=reverse,
tails="linear",
tail_bound=self.tail_bound,
)
x = torch.cat([x0, x1], 1) * x_mask
logdet = torch.sum(logabsdet * x_mask, [1, 2])
if not reverse:
return x, logdet
else:
return x

@ -0,0 +1,2 @@
all:
python3 setup.py build_ext --inplace

@ -0,0 +1,20 @@
import numpy as np
import torch
from .monotonic_align.core import maximum_path_c
def maximum_path(neg_cent, mask):
"""Cython optimized version.
neg_cent: [b, t_t, t_s]
mask: [b, t_t, t_s]
"""
device = neg_cent.device
dtype = neg_cent.dtype
neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
path = np.zeros(neg_cent.shape, dtype=np.int32)
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
return torch.from_numpy(path).to(device=device, dtype=dtype)

File diff suppressed because it is too large Load Diff

@ -0,0 +1,42 @@
cimport cython
from cython.parallel import prange
@cython.boundscheck(False)
@cython.wraparound(False)
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
cdef int x
cdef int y
cdef float v_prev
cdef float v_cur
cdef float tmp
cdef int index = t_x - 1
for y in range(t_y):
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
if x == y:
v_cur = max_neg_val
else:
v_cur = value[y-1, x]
if x == 0:
if y == 0:
v_prev = 0.
else:
v_prev = max_neg_val
else:
v_prev = value[y-1, x-1]
value[y, x] += max(v_prev, v_cur)
for y in range(t_y - 1, -1, -1):
path[y, index] = 1
if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
index = index - 1
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
cdef int b = paths.shape[0]
cdef int i
for i in prange(b, nogil=True):
maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])

@ -0,0 +1,13 @@
from distutils.core import setup
from pathlib import Path
import numpy
from Cython.Build import cythonize
_DIR = Path(__file__).parent
setup(
name="monotonic_align",
ext_modules=cythonize(str(_DIR / "core.pyx")),
include_dirs=[numpy.get_include()],
)

@ -0,0 +1,212 @@
import numpy as np
import torch
from torch.nn import functional as F
DEFAULT_MIN_BIN_WIDTH = 1e-3
DEFAULT_MIN_BIN_HEIGHT = 1e-3
DEFAULT_MIN_DERIVATIVE = 1e-3
def piecewise_rational_quadratic_transform(
inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
tails=None,
tail_bound=1.0,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE,
):
if tails is None:
spline_fn = rational_quadratic_spline
spline_kwargs = {}
else:
spline_fn = unconstrained_rational_quadratic_spline
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
outputs, logabsdet = spline_fn(
inputs=inputs,
unnormalized_widths=unnormalized_widths,
unnormalized_heights=unnormalized_heights,
unnormalized_derivatives=unnormalized_derivatives,
inverse=inverse,
min_bin_width=min_bin_width,
min_bin_height=min_bin_height,
min_derivative=min_derivative,
**spline_kwargs
)
return outputs, logabsdet
def searchsorted(bin_locations, inputs, eps=1e-6):
# bin_locations[..., -1] += eps
bin_locations[..., bin_locations.size(-1) - 1] += eps
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
def unconstrained_rational_quadratic_spline(
inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
tails="linear",
tail_bound=1.0,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE,
):
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
outside_interval_mask = ~inside_interval_mask
outputs = torch.zeros_like(inputs)
logabsdet = torch.zeros_like(inputs)
if tails == "linear":
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
constant = np.log(np.exp(1 - min_derivative) - 1)
unnormalized_derivatives[..., 0] = constant
# unnormalized_derivatives[..., -1] = constant
unnormalized_derivatives[..., unnormalized_derivatives.size(-1) - 1] = constant
outputs[outside_interval_mask] = inputs[outside_interval_mask]
logabsdet[outside_interval_mask] = 0
else:
raise RuntimeError("{} tails are not implemented.".format(tails))
(
outputs[inside_interval_mask],
logabsdet[inside_interval_mask],
) = rational_quadratic_spline(
inputs=inputs[inside_interval_mask],
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
inverse=inverse,
left=-tail_bound,
right=tail_bound,
bottom=-tail_bound,
top=tail_bound,
min_bin_width=min_bin_width,
min_bin_height=min_bin_height,
min_derivative=min_derivative,
)
return outputs, logabsdet
def rational_quadratic_spline(
inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=False,
left=0.0,
right=1.0,
bottom=0.0,
top=1.0,
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
min_derivative=DEFAULT_MIN_DERIVATIVE,
):
# if torch.min(inputs) < left or torch.max(inputs) > right:
# raise ValueError("Input to a transform is not within its domain")
num_bins = unnormalized_widths.shape[-1]
# if min_bin_width * num_bins > 1.0:
# raise ValueError("Minimal bin width too large for the number of bins")
# if min_bin_height * num_bins > 1.0:
# raise ValueError("Minimal bin height too large for the number of bins")
widths = F.softmax(unnormalized_widths, dim=-1)
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
cumwidths = torch.cumsum(widths, dim=-1)
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
cumwidths = (right - left) * cumwidths + left
cumwidths[..., 0] = left
# cumwidths[..., -1] = right
cumwidths[..., cumwidths.size(-1) - 1] = right
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
heights = F.softmax(unnormalized_heights, dim=-1)
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
cumheights = torch.cumsum(heights, dim=-1)
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
cumheights = (top - bottom) * cumheights + bottom
cumheights[..., 0] = bottom
# cumheights[..., -1] = top
cumheights[..., cumheights.size(-1) - 1] = top
heights = cumheights[..., 1:] - cumheights[..., :-1]
if inverse:
bin_idx = searchsorted(cumheights, inputs)[..., None]
else:
bin_idx = searchsorted(cumwidths, inputs)[..., None]
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
delta = heights / widths
input_delta = delta.gather(-1, bin_idx)[..., 0]
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
input_heights = heights.gather(-1, bin_idx)[..., 0]
if inverse:
a = (inputs - input_cumheights) * (
input_derivatives + input_derivatives_plus_one - 2 * input_delta
) + input_heights * (input_delta - input_derivatives)
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
input_derivatives + input_derivatives_plus_one - 2 * input_delta
)
c = -input_delta * (inputs - input_cumheights)
discriminant = b.pow(2) - 4 * a * c
assert (discriminant >= 0).all(), discriminant
root = (2 * c) / (-b - torch.sqrt(discriminant))
outputs = root * input_bin_widths + input_cumwidths
theta_one_minus_theta = root * (1 - root)
denominator = input_delta + (
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
* theta_one_minus_theta
)
derivative_numerator = input_delta.pow(2) * (
input_derivatives_plus_one * root.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - root).pow(2)
)
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, -logabsdet
theta = (inputs - input_cumwidths) / input_bin_widths
theta_one_minus_theta = theta * (1 - theta)
numerator = input_heights * (
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
)
denominator = input_delta + (
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
* theta_one_minus_theta
)
outputs = input_cumheights + numerator / denominator
derivative_numerator = input_delta.pow(2) * (
input_derivatives_plus_one * theta.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - theta).pow(2)
)
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, logabsdet

@ -0,0 +1,16 @@
import numpy as np
import torch
def to_gpu(x: torch.Tensor) -> torch.Tensor:
return x.contiguous().cuda(non_blocking=True)
def audio_float_to_int16(
audio: np.ndarray, max_wav_value: float = 32767.0
) -> np.ndarray:
"""Normalize audio and convert to int16 range"""
audio_norm = audio * (max_wav_value / max(0.01, np.max(np.abs(audio))))
audio_norm = np.clip(audio_norm, -max_wav_value, max_wav_value)
audio_norm = audio_norm.astype("int16")
return audio_norm

@ -0,0 +1,172 @@
import json
from dataclasses import dataclass
from pathlib import Path
from subprocess import Popen
from typing import List, Optional
import librosa
import torch
from dataclasses_json import DataClassJsonMixin
from torch import Tensor
@dataclass
class DatasetUtterance(DataClassJsonMixin):
id: str
text: Optional[str] = None
phonemes: Optional[List[str]] = None
phoneme_ids: Optional[List[int]] = None
audio_path: Optional[Path] = None
audio_norm_path: Optional[Path] = None
mel_spec_path: Optional[Path] = None
speaker: Optional[str] = None
speaker_id: Optional[int] = None
def __post_init__(self):
self._original_json: Optional[str] = None
@property
def original_json(self) -> str:
if self._original_json is None:
self._original_json = self.to_json(ensure_ascii=False)
return self._original_json
@dataclass
class TrainingUtterance:
id: str
phoneme_ids: Tensor
audio_norm: Tensor
mel_spec: Tensor
speaker_id: Optional[Tensor] = None
# -----------------------------------------------------------------------------
@dataclass
class UtteranceLoadingContext:
cache_dir: Path
is_multispeaker: bool
phonemize: Optional[Popen] = None
phonemes2ids: Optional[Popen] = None
speaker2id: Optional[Popen] = None
audio2norm: Optional[Popen] = None
audio2spec: Optional[Popen] = None
def load_utterance(
utterance_json: str, context: UtteranceLoadingContext
) -> TrainingUtterance:
data_utterance = DatasetUtterance.from_json(utterance_json)
# pylint: disable=protected-access
data_utterance._original_json = utterance_json
# Requirements:
# 1. phoneme ids
# 2. audio norm
# 3. mel spec
# 4. speaker id (if multispeaker)
# 1. phoneme ids
if data_utterance.phoneme_ids is None:
_load_phoneme_ids(data_utterance, context)
# 2. audio norm
if (data_utterance.audio_norm_path is None) or (
not data_utterance.audio_norm_path.exists()
):
_load_audio_norm(data_utterance, context)
# 3. mel spec
if (data_utterance.mel_spec_path is None) or (
not data_utterance.mel_spec_path.exists()
):
_load_mel_spec(data_utterance, context)
# 4. speaker id
if context.is_multispeaker:
if data_utterance.speaker_id is None:
_load_speaker_id(data_utterance, context)
# Convert to training utterance
assert data_utterance.phoneme_ids is not None
assert data_utterance.audio_norm_path is not None
assert data_utterance.mel_spec_path is not None
if context.is_multispeaker:
assert data_utterance.speaker_id is not None
train_utterance = TrainingUtterance(
id=data_utterance.id,
phoneme_ids=torch.LongTensor(data_utterance.phoneme_ids),
audio_norm=torch.load(data_utterance.audio_norm_path),
mel_spec=torch.load(data_utterance.mel_spec_path),
speaker_id=None
if data_utterance.speaker_id is None
else torch.LongTensor(data_utterance.speaker_id),
)
return train_utterance
def _load_phoneme_ids(
data_utterance: DatasetUtterance, context: UtteranceLoadingContext
):
if data_utterance.phonemes is None:
# Need phonemes first
_load_phonemes(data_utterance, context)
assert (
data_utterance.phonemes is not None
), f"phonemes is required for phoneme ids: {data_utterance}"
assert (
context.phonemes2ids is not None
), f"phonemes2ids program is required for phoneme ids: {data_utterance}"
assert context.phonemes2ids.stdin is not None
assert context.phonemes2ids.stdout is not None
# JSON in, JSON out
print(data_utterance.original_json, file=context.phonemes2ids.stdin, flush=True)
result_json = context.phonemes2ids.stdout.readline()
result_dict = json.loads(result_json)
# Update utterance
data_utterance.phoneme_ids = result_dict["phoneme_ids"]
data_utterance._original_json = result_json
def _load_phonemes(data_utterance: DatasetUtterance, context: UtteranceLoadingContext):
assert (
data_utterance.text is not None
), f"text is required for phonemes: {data_utterance}"
assert (
context.phonemize is not None
), f"phonemize program is required for phonemes: {data_utterance}"
assert context.phonemize.stdin is not None
assert context.phonemize.stdout is not None
# JSON in, JSON out
print(data_utterance.original_json, file=context.phonemize.stdin, flush=True)
result_json = context.phonemize.stdout.readline()
result_dict = json.loads(result_json)
# Update utterance
data_utterance.phonemes = result_dict["phoneme"]
data_utterance._original_json = result_json
def _load_audio_norm(
data_utterance: DatasetUtterance, context: UtteranceLoadingContext
):
pass
def _load_mel_spec(data_utterance: DatasetUtterance, context: UtteranceLoadingContext):
pass

@ -0,0 +1,860 @@
"""
Module to read / write wav files using NumPy arrays
Functions
---------
`read`: Return the sample rate (in samples/sec) and data from a WAV file.
`write`: Write a NumPy array as a WAV file.
"""
import io
import struct
import sys
import warnings
from enum import IntEnum
import numpy
__all__ = ["WavFileWarning", "read", "write"]
class WavFileWarning(UserWarning):
pass
class WAVE_FORMAT(IntEnum):
"""
WAVE form wFormatTag IDs
Complete list is in mmreg.h in Windows 10 SDK. ALAC and OPUS are the
newest additions, in v10.0.14393 2016-07
"""
UNKNOWN = 0x0000
PCM = 0x0001
ADPCM = 0x0002
IEEE_FLOAT = 0x0003
VSELP = 0x0004
IBM_CVSD = 0x0005
ALAW = 0x0006
MULAW = 0x0007
DTS = 0x0008
DRM = 0x0009
WMAVOICE9 = 0x000A
WMAVOICE10 = 0x000B
OKI_ADPCM = 0x0010
DVI_ADPCM = 0x0011
IMA_ADPCM = 0x0011 # Duplicate
MEDIASPACE_ADPCM = 0x0012
SIERRA_ADPCM = 0x0013
G723_ADPCM = 0x0014
DIGISTD = 0x0015
DIGIFIX = 0x0016
DIALOGIC_OKI_ADPCM = 0x0017
MEDIAVISION_ADPCM = 0x0018
CU_CODEC = 0x0019
HP_DYN_VOICE = 0x001A
YAMAHA_ADPCM = 0x0020
SONARC = 0x0021
DSPGROUP_TRUESPEECH = 0x0022
ECHOSC1 = 0x0023
AUDIOFILE_AF36 = 0x0024
APTX = 0x0025
AUDIOFILE_AF10 = 0x0026
PROSODY_1612 = 0x0027
LRC = 0x0028
DOLBY_AC2 = 0x0030
GSM610 = 0x0031
MSNAUDIO = 0x0032
ANTEX_ADPCME = 0x0033
CONTROL_RES_VQLPC = 0x0034
DIGIREAL = 0x0035
DIGIADPCM = 0x0036
CONTROL_RES_CR10 = 0x0037
NMS_VBXADPCM = 0x0038
CS_IMAADPCM = 0x0039
ECHOSC3 = 0x003A
ROCKWELL_ADPCM = 0x003B
ROCKWELL_DIGITALK = 0x003C
XEBEC = 0x003D
G721_ADPCM = 0x0040
G728_CELP = 0x0041
MSG723 = 0x0042
INTEL_G723_1 = 0x0043
INTEL_G729 = 0x0044
SHARP_G726 = 0x0045
MPEG = 0x0050
RT24 = 0x0052
PAC = 0x0053
MPEGLAYER3 = 0x0055
LUCENT_G723 = 0x0059
CIRRUS = 0x0060
ESPCM = 0x0061
VOXWARE = 0x0062
CANOPUS_ATRAC = 0x0063
G726_ADPCM = 0x0064
G722_ADPCM = 0x0065
DSAT = 0x0066
DSAT_DISPLAY = 0x0067
VOXWARE_BYTE_ALIGNED = 0x0069
VOXWARE_AC8 = 0x0070
VOXWARE_AC10 = 0x0071
VOXWARE_AC16 = 0x0072
VOXWARE_AC20 = 0x0073
VOXWARE_RT24 = 0x0074
VOXWARE_RT29 = 0x0075
VOXWARE_RT29HW = 0x0076
VOXWARE_VR12 = 0x0077
VOXWARE_VR18 = 0x0078
VOXWARE_TQ40 = 0x0079
VOXWARE_SC3 = 0x007A
VOXWARE_SC3_1 = 0x007B
SOFTSOUND = 0x0080
VOXWARE_TQ60 = 0x0081
MSRT24 = 0x0082
G729A = 0x0083
MVI_MVI2 = 0x0084
DF_G726 = 0x0085
DF_GSM610 = 0x0086
ISIAUDIO = 0x0088
ONLIVE = 0x0089
MULTITUDE_FT_SX20 = 0x008A
INFOCOM_ITS_G721_ADPCM = 0x008B
CONVEDIA_G729 = 0x008C
CONGRUENCY = 0x008D
SBC24 = 0x0091
DOLBY_AC3_SPDIF = 0x0092
MEDIASONIC_G723 = 0x0093
PROSODY_8KBPS = 0x0094
ZYXEL_ADPCM = 0x0097
PHILIPS_LPCBB = 0x0098
PACKED = 0x0099
MALDEN_PHONYTALK = 0x00A0
RACAL_RECORDER_GSM = 0x00A1
RACAL_RECORDER_G720_A = 0x00A2
RACAL_RECORDER_G723_1 = 0x00A3
RACAL_RECORDER_TETRA_ACELP = 0x00A4
NEC_AAC = 0x00B0
RAW_AAC1 = 0x00FF
RHETOREX_ADPCM = 0x0100
IRAT = 0x0101
VIVO_G723 = 0x0111
VIVO_SIREN = 0x0112
PHILIPS_CELP = 0x0120
PHILIPS_GRUNDIG = 0x0121
DIGITAL_G723 = 0x0123
SANYO_LD_ADPCM = 0x0125
SIPROLAB_ACEPLNET = 0x0130
SIPROLAB_ACELP4800 = 0x0131
SIPROLAB_ACELP8V3 = 0x0132
SIPROLAB_G729 = 0x0133
SIPROLAB_G729A = 0x0134
SIPROLAB_KELVIN = 0x0135
VOICEAGE_AMR = 0x0136
G726ADPCM = 0x0140
DICTAPHONE_CELP68 = 0x0141
DICTAPHONE_CELP54 = 0x0142
QUALCOMM_PUREVOICE = 0x0150
QUALCOMM_HALFRATE = 0x0151
TUBGSM = 0x0155
MSAUDIO1 = 0x0160
WMAUDIO2 = 0x0161
WMAUDIO3 = 0x0162
WMAUDIO_LOSSLESS = 0x0163
WMASPDIF = 0x0164
UNISYS_NAP_ADPCM = 0x0170
UNISYS_NAP_ULAW = 0x0171
UNISYS_NAP_ALAW = 0x0172
UNISYS_NAP_16K = 0x0173
SYCOM_ACM_SYC008 = 0x0174
SYCOM_ACM_SYC701_G726L = 0x0175
SYCOM_ACM_SYC701_CELP54 = 0x0176
SYCOM_ACM_SYC701_CELP68 = 0x0177
KNOWLEDGE_ADVENTURE_ADPCM = 0x0178
FRAUNHOFER_IIS_MPEG2_AAC = 0x0180
DTS_DS = 0x0190
CREATIVE_ADPCM = 0x0200
CREATIVE_FASTSPEECH8 = 0x0202
CREATIVE_FASTSPEECH10 = 0x0203
UHER_ADPCM = 0x0210
ULEAD_DV_AUDIO = 0x0215
ULEAD_DV_AUDIO_1 = 0x0216
QUARTERDECK = 0x0220
ILINK_VC = 0x0230
RAW_SPORT = 0x0240
ESST_AC3 = 0x0241
GENERIC_PASSTHRU = 0x0249
IPI_HSX = 0x0250
IPI_RPELP = 0x0251
CS2 = 0x0260
SONY_SCX = 0x0270
SONY_SCY = 0x0271
SONY_ATRAC3 = 0x0272
SONY_SPC = 0x0273
TELUM_AUDIO = 0x0280
TELUM_IA_AUDIO = 0x0281
NORCOM_VOICE_SYSTEMS_ADPCM = 0x0285
FM_TOWNS_SND = 0x0300
MICRONAS = 0x0350
MICRONAS_CELP833 = 0x0351
BTV_DIGITAL = 0x0400
INTEL_MUSIC_CODER = 0x0401
INDEO_AUDIO = 0x0402
QDESIGN_MUSIC = 0x0450
ON2_VP7_AUDIO = 0x0500
ON2_VP6_AUDIO = 0x0501
VME_VMPCM = 0x0680
TPC = 0x0681
LIGHTWAVE_LOSSLESS = 0x08AE
OLIGSM = 0x1000
OLIADPCM = 0x1001
OLICELP = 0x1002
OLISBC = 0x1003
OLIOPR = 0x1004
LH_CODEC = 0x1100
LH_CODEC_CELP = 0x1101
LH_CODEC_SBC8 = 0x1102
LH_CODEC_SBC12 = 0x1103
LH_CODEC_SBC16 = 0x1104
NORRIS = 0x1400
ISIAUDIO_2 = 0x1401
SOUNDSPACE_MUSICOMPRESS = 0x1500
MPEG_ADTS_AAC = 0x1600
MPEG_RAW_AAC = 0x1601
MPEG_LOAS = 0x1602
NOKIA_MPEG_ADTS_AAC = 0x1608
NOKIA_MPEG_RAW_AAC = 0x1609
VODAFONE_MPEG_ADTS_AAC = 0x160A
VODAFONE_MPEG_RAW_AAC = 0x160B
MPEG_HEAAC = 0x1610
VOXWARE_RT24_SPEECH = 0x181C
SONICFOUNDRY_LOSSLESS = 0x1971
INNINGS_TELECOM_ADPCM = 0x1979
LUCENT_SX8300P = 0x1C07
LUCENT_SX5363S = 0x1C0C
CUSEEME = 0x1F03
NTCSOFT_ALF2CM_ACM = 0x1FC4
DVM = 0x2000
DTS2 = 0x2001
MAKEAVIS = 0x3313
DIVIO_MPEG4_AAC = 0x4143
NOKIA_ADAPTIVE_MULTIRATE = 0x4201
DIVIO_G726 = 0x4243
LEAD_SPEECH = 0x434C
LEAD_VORBIS = 0x564C
WAVPACK_AUDIO = 0x5756
OGG_VORBIS_MODE_1 = 0x674F
OGG_VORBIS_MODE_2 = 0x6750
OGG_VORBIS_MODE_3 = 0x6751
OGG_VORBIS_MODE_1_PLUS = 0x676F
OGG_VORBIS_MODE_2_PLUS = 0x6770
OGG_VORBIS_MODE_3_PLUS = 0x6771
ALAC = 0x6C61
_3COM_NBX = 0x7000 # Can't have leading digit
OPUS = 0x704F
FAAD_AAC = 0x706D
AMR_NB = 0x7361
AMR_WB = 0x7362
AMR_WP = 0x7363
GSM_AMR_CBR = 0x7A21
GSM_AMR_VBR_SID = 0x7A22
COMVERSE_INFOSYS_G723_1 = 0xA100
COMVERSE_INFOSYS_AVQSBC = 0xA101
COMVERSE_INFOSYS_SBC = 0xA102
SYMBOL_G729_A = 0xA103
VOICEAGE_AMR_WB = 0xA104
INGENIENT_G726 = 0xA105
MPEG4_AAC = 0xA106
ENCORE_G726 = 0xA107
ZOLL_ASAO = 0xA108
SPEEX_VOICE = 0xA109
VIANIX_MASC = 0xA10A
WM9_SPECTRUM_ANALYZER = 0xA10B
WMF_SPECTRUM_ANAYZER = 0xA10C
GSM_610 = 0xA10D
GSM_620 = 0xA10E
GSM_660 = 0xA10F
GSM_690 = 0xA110
GSM_ADAPTIVE_MULTIRATE_WB = 0xA111
POLYCOM_G722 = 0xA112
POLYCOM_G728 = 0xA113
POLYCOM_G729_A = 0xA114
POLYCOM_SIREN = 0xA115
GLOBAL_IP_ILBC = 0xA116
RADIOTIME_TIME_SHIFT_RADIO = 0xA117
NICE_ACA = 0xA118
NICE_ADPCM = 0xA119
VOCORD_G721 = 0xA11A
VOCORD_G726 = 0xA11B
VOCORD_G722_1 = 0xA11C
VOCORD_G728 = 0xA11D
VOCORD_G729 = 0xA11E
VOCORD_G729_A = 0xA11F
VOCORD_G723_1 = 0xA120
VOCORD_LBC = 0xA121
NICE_G728 = 0xA122
FRACE_TELECOM_G729 = 0xA123
CODIAN = 0xA124
FLAC = 0xF1AC
EXTENSIBLE = 0xFFFE
DEVELOPMENT = 0xFFFF
KNOWN_WAVE_FORMATS = {WAVE_FORMAT.PCM, WAVE_FORMAT.IEEE_FLOAT}
def _raise_bad_format(format_tag):
try:
format_name = WAVE_FORMAT(format_tag).name
except ValueError:
format_name = f"{format_tag:#06x}"
raise ValueError(
f"Unknown wave file format: {format_name}. Supported "
"formats: " + ", ".join(x.name for x in KNOWN_WAVE_FORMATS)
)
def _read_fmt_chunk(fid, is_big_endian):
"""
Returns
-------
size : int
size of format subchunk in bytes (minus 8 for "fmt " and itself)
format_tag : int
PCM, float, or compressed format
channels : int
number of channels
fs : int
sampling frequency in samples per second
bytes_per_second : int
overall byte rate for the file
block_align : int
bytes per sample, including all channels
bit_depth : int
bits per sample
Notes
-----
Assumes file pointer is immediately after the 'fmt ' id
"""
if is_big_endian:
fmt = ">"
else:
fmt = "<"
size = struct.unpack(fmt + "I", fid.read(4))[0]
if size < 16:
raise ValueError("Binary structure of wave file is not compliant")
res = struct.unpack(fmt + "HHIIHH", fid.read(16))
bytes_read = 16
format_tag, channels, fs, bytes_per_second, block_align, bit_depth = res
if format_tag == WAVE_FORMAT.EXTENSIBLE and size >= (16 + 2):
ext_chunk_size = struct.unpack(fmt + "H", fid.read(2))[0]
bytes_read += 2
if ext_chunk_size >= 22:
extensible_chunk_data = fid.read(22)
bytes_read += 22
raw_guid = extensible_chunk_data[2 + 4 : 2 + 4 + 16]
# GUID template {XXXXXXXX-0000-0010-8000-00AA00389B71} (RFC-2361)
# MS GUID byte order: first three groups are native byte order,
# rest is Big Endian
if is_big_endian:
tail = b"\x00\x00\x00\x10\x80\x00\x00\xAA\x00\x38\x9B\x71"
else:
tail = b"\x00\x00\x10\x00\x80\x00\x00\xAA\x00\x38\x9B\x71"
if raw_guid.endswith(tail):
format_tag = struct.unpack(fmt + "I", raw_guid[:4])[0]
else:
raise ValueError("Binary structure of wave file is not compliant")
if format_tag not in KNOWN_WAVE_FORMATS:
_raise_bad_format(format_tag)
# move file pointer to next chunk
if size > bytes_read:
fid.read(size - bytes_read)
# fmt should always be 16, 18 or 40, but handle it just in case
_handle_pad_byte(fid, size)
return (size, format_tag, channels, fs, bytes_per_second, block_align, bit_depth)
def _read_data_chunk(
fid, format_tag, channels, bit_depth, is_big_endian, block_align, mmap=False
):
"""
Notes
-----
Assumes file pointer is immediately after the 'data' id
It's possible to not use all available bits in a container, or to store
samples in a container bigger than necessary, so bytes_per_sample uses
the actual reported container size (nBlockAlign / nChannels). Real-world
examples:
Adobe Audition's "24-bit packed int (type 1, 20-bit)"
nChannels = 2, nBlockAlign = 6, wBitsPerSample = 20
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Samples/AFsp/M1F1-int12-AFsp.wav
is:
nChannels = 2, nBlockAlign = 4, wBitsPerSample = 12
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/multichaudP.pdf
gives an example of:
nChannels = 2, nBlockAlign = 8, wBitsPerSample = 20
"""
if is_big_endian:
fmt = ">"
else:
fmt = "<"
# Size of the data subchunk in bytes
size = struct.unpack(fmt + "I", fid.read(4))[0]
# Number of bytes per sample (sample container size)
bytes_per_sample = block_align // channels
n_samples = size // bytes_per_sample
if format_tag == WAVE_FORMAT.PCM:
if 1 <= bit_depth <= 8:
dtype = "u1" # WAV of 8-bit integer or less are unsigned
elif bytes_per_sample in {3, 5, 6, 7}:
# No compatible dtype. Load as raw bytes for reshaping later.
dtype = "V1"
elif bit_depth <= 64:
# Remaining bit depths can map directly to signed numpy dtypes
dtype = f"{fmt}i{bytes_per_sample}"
else:
raise ValueError(
"Unsupported bit depth: the WAV file "
f"has {bit_depth}-bit integer data."
)
elif format_tag == WAVE_FORMAT.IEEE_FLOAT:
if bit_depth in {32, 64}:
dtype = f"{fmt}f{bytes_per_sample}"
else:
raise ValueError(
"Unsupported bit depth: the WAV file "
f"has {bit_depth}-bit floating-point data."
)
else:
_raise_bad_format(format_tag)
start = fid.tell()
if not mmap:
try:
count = size if dtype == "V1" else n_samples
data = numpy.fromfile(fid, dtype=dtype, count=count)
except io.UnsupportedOperation: # not a C-like file
fid.seek(start, 0) # just in case it seeked, though it shouldn't
data = numpy.frombuffer(fid.read(size), dtype=dtype)
if dtype == "V1":
# Rearrange raw bytes into smallest compatible numpy dtype
dt = f"{fmt}i4" if bytes_per_sample == 3 else f"{fmt}i8"
a = numpy.zeros(
(len(data) // bytes_per_sample, numpy.dtype(dt).itemsize), dtype="V1"
)
if is_big_endian:
a[:, :bytes_per_sample] = data.reshape((-1, bytes_per_sample))
else:
a[:, -bytes_per_sample:] = data.reshape((-1, bytes_per_sample))
data = a.view(dt).reshape(a.shape[:-1])
else:
if bytes_per_sample in {1, 2, 4, 8}:
start = fid.tell()
data = numpy.memmap(
fid, dtype=dtype, mode="c", offset=start, shape=(n_samples,)
)
fid.seek(start + size)
else:
raise ValueError(
"mmap=True not compatible with "
f"{bytes_per_sample}-byte container size."
)
_handle_pad_byte(fid, size)
if channels > 1:
data = data.reshape(-1, channels)
return data
def _skip_unknown_chunk(fid, is_big_endian):
if is_big_endian:
fmt = ">I"
else:
fmt = "<I"
data = fid.read(4)
# call unpack() and seek() only if we have really read data from file
# otherwise empty read at the end of the file would trigger
# unnecessary exception at unpack() call
# in case data equals somehow to 0, there is no need for seek() anyway
if data:
size = struct.unpack(fmt, data)[0]
fid.seek(size, 1)
_handle_pad_byte(fid, size)
def _read_riff_chunk(fid):
str1 = fid.read(4) # File signature
if str1 == b"RIFF":
is_big_endian = False
fmt = "<I"
elif str1 == b"RIFX":
is_big_endian = True
fmt = ">I"
else:
# There are also .wav files with "FFIR" or "XFIR" signatures?
raise ValueError(
f"File format {repr(str1)} not understood. Only "
"'RIFF' and 'RIFX' supported."
)
# Size of entire file
file_size = struct.unpack(fmt, fid.read(4))[0] + 8
str2 = fid.read(4)
if str2 != b"WAVE":
raise ValueError(f"Not a WAV file. RIFF form type is {repr(str2)}.")
return file_size, is_big_endian
def _handle_pad_byte(fid, size):
# "If the chunk size is an odd number of bytes, a pad byte with value zero
# is written after ckData." So we need to seek past this after each chunk.
if size % 2:
fid.seek(1, 1)
def read(filename, mmap=False):
"""
Open a WAV file.
Return the sample rate (in samples/sec) and data from an LPCM WAV file.
Parameters
----------
filename : string or open file handle
Input WAV file.
mmap : bool, optional
Whether to read data as memory-mapped (default: False). Not compatible
with some bit depths; see Notes. Only to be used on real files.
.. versionadded:: 0.12.0
Returns
-------
rate : int
Sample rate of WAV file.
data : numpy array
Data read from WAV file. Data-type is determined from the file;
see Notes. Data is 1-D for 1-channel WAV, or 2-D of shape
(Nsamples, Nchannels) otherwise. If a file-like input without a
C-like file descriptor (e.g., :class:`python:io.BytesIO`) is
passed, this will not be writeable.
Notes
-----
Common data types: [1]_
===================== =========== =========== =============
WAV format Min Max NumPy dtype
===================== =========== =========== =============
32-bit floating-point -1.0 +1.0 float32
32-bit integer PCM -2147483648 +2147483647 int32
24-bit integer PCM -2147483648 +2147483392 int32
16-bit integer PCM -32768 +32767 int16
8-bit integer PCM 0 255 uint8
===================== =========== =========== =============
WAV files can specify arbitrary bit depth, and this function supports
reading any integer PCM depth from 1 to 64 bits. Data is returned in the
smallest compatible numpy int type, in left-justified format. 8-bit and
lower is unsigned, while 9-bit and higher is signed.
For example, 24-bit data will be stored as int32, with the MSB of the
24-bit data stored at the MSB of the int32, and typically the least
significant byte is 0x00. (However, if a file actually contains data past
its specified bit depth, those bits will be read and output, too. [2]_)
This bit justification and sign matches WAV's native internal format, which
allows memory mapping of WAV files that use 1, 2, 4, or 8 bytes per sample
(so 24-bit files cannot be memory-mapped, but 32-bit can).
IEEE float PCM in 32- or 64-bit format is supported, with or without mmap.
Values exceeding [-1, +1] are not clipped.
Non-linear PCM (mu-law, A-law) is not supported.
References
----------
.. [1] IBM Corporation and Microsoft Corporation, "Multimedia Programming
Interface and Data Specifications 1.0", section "Data Format of the
Samples", August 1991
http://www.tactilemedia.com/info/MCI_Control_Info.html
.. [2] Adobe Systems Incorporated, "Adobe Audition 3 User Guide", section
"Audio file formats: 24-bit Packed Int (type 1, 20-bit)", 2007
Examples
--------
>>> from os.path import dirname, join as pjoin
>>> from scipy.io import wavfile
>>> import scipy.io
Get the filename for an example .wav file from the tests/data directory.
>>> data_dir = pjoin(dirname(scipy.io.__file__), 'tests', 'data')
>>> wav_fname = pjoin(data_dir, 'test-44100Hz-2ch-32bit-float-be.wav')
Load the .wav file contents.
>>> samplerate, data = wavfile.read(wav_fname)
>>> print(f"number of channels = {data.shape[1]}")
number of channels = 2
>>> length = data.shape[0] / samplerate
>>> print(f"length = {length}s")
length = 0.01s
Plot the waveform.
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> time = np.linspace(0., length, data.shape[0])
>>> plt.plot(time, data[:, 0], label="Left channel")
>>> plt.plot(time, data[:, 1], label="Right channel")
>>> plt.legend()
>>> plt.xlabel("Time [s]")
>>> plt.ylabel("Amplitude")
>>> plt.show()
"""
if hasattr(filename, "read"):
fid = filename
mmap = False
else:
# pylint: disable=consider-using-with
fid = open(filename, "rb")
try:
file_size, is_big_endian = _read_riff_chunk(fid)
fmt_chunk_received = False
data_chunk_received = False
while fid.tell() < file_size:
# read the next chunk
chunk_id = fid.read(4)
if not chunk_id:
if data_chunk_received:
# End of file but data successfully read
warnings.warn(
f"Reached EOF prematurely; finished at {fid.tell()} bytes, "
"expected {file_size} bytes from header.",
WavFileWarning,
stacklevel=2,
)
break
raise ValueError("Unexpected end of file.")
if len(chunk_id) < 4:
msg = f"Incomplete chunk ID: {repr(chunk_id)}"
# If we have the data, ignore the broken chunk
if fmt_chunk_received and data_chunk_received:
warnings.warn(msg + ", ignoring it.", WavFileWarning, stacklevel=2)
else:
raise ValueError(msg)
if chunk_id == b"fmt ":
fmt_chunk_received = True
fmt_chunk = _read_fmt_chunk(fid, is_big_endian)
format_tag, channels, fs = fmt_chunk[1:4]
bit_depth = fmt_chunk[6]
block_align = fmt_chunk[5]
elif chunk_id == b"fact":
_skip_unknown_chunk(fid, is_big_endian)
elif chunk_id == b"data":
data_chunk_received = True
if not fmt_chunk_received:
raise ValueError("No fmt chunk before data")
data = _read_data_chunk(
fid,
format_tag,
channels,
bit_depth,
is_big_endian,
block_align,
mmap,
)
elif chunk_id == b"LIST":
# Someday this could be handled properly but for now skip it
_skip_unknown_chunk(fid, is_big_endian)
elif chunk_id in {b"JUNK", b"Fake"}:
# Skip alignment chunks without warning
_skip_unknown_chunk(fid, is_big_endian)
else:
warnings.warn(
"Chunk (non-data) not understood, skipping it.",
WavFileWarning,
stacklevel=2,
)
_skip_unknown_chunk(fid, is_big_endian)
finally:
if not hasattr(filename, "read"):
fid.close()
else:
fid.seek(0)
return fs, data
def write(filename, rate, data):
"""
Write a NumPy array as a WAV file.
Parameters
----------
filename : string or open file handle
Output wav file.
rate : int
The sample rate (in samples/sec).
data : ndarray
A 1-D or 2-D NumPy array of either integer or float data-type.
Notes
-----
* Writes a simple uncompressed WAV file.
* To write multiple-channels, use a 2-D array of shape
(Nsamples, Nchannels).
* The bits-per-sample and PCM/float will be determined by the data-type.
Common data types: [1]_
===================== =========== =========== =============
WAV format Min Max NumPy dtype
===================== =========== =========== =============
32-bit floating-point -1.0 +1.0 float32
32-bit PCM -2147483648 +2147483647 int32
16-bit PCM -32768 +32767 int16
8-bit PCM 0 255 uint8
===================== =========== =========== =============
Note that 8-bit PCM is unsigned.
References
----------
.. [1] IBM Corporation and Microsoft Corporation, "Multimedia Programming
Interface and Data Specifications 1.0", section "Data Format of the
Samples", August 1991
http://www.tactilemedia.com/info/MCI_Control_Info.html
Examples
--------
Create a 100Hz sine wave, sampled at 44100Hz.
Write to 16-bit PCM, Mono.
>>> from scipy.io.wavfile import write
>>> samplerate = 44100; fs = 100
>>> t = np.linspace(0., 1., samplerate)
>>> amplitude = np.iinfo(np.int16).max
>>> data = amplitude * np.sin(2. * np.pi * fs * t)
>>> write("example.wav", samplerate, data.astype(np.int16))
"""
if hasattr(filename, "write"):
fid = filename
else:
# pylint: disable=consider-using-with
fid = open(filename, "wb")
fs = rate
try:
dkind = data.dtype.kind
if not (
dkind == "i" or dkind == "f" or (dkind == "u" and data.dtype.itemsize == 1)
):
raise ValueError(f"Unsupported data type '{data.dtype}'")
header_data = b""
header_data += b"RIFF"
header_data += b"\x00\x00\x00\x00"
header_data += b"WAVE"
# fmt chunk
header_data += b"fmt "
if dkind == "f":
format_tag = WAVE_FORMAT.IEEE_FLOAT
else:
format_tag = WAVE_FORMAT.PCM
if data.ndim == 1:
channels = 1
else:
channels = data.shape[1]
bit_depth = data.dtype.itemsize * 8
bytes_per_second = fs * (bit_depth // 8) * channels
block_align = channels * (bit_depth // 8)
fmt_chunk_data = struct.pack(
"<HHIIHH",
format_tag,
channels,
fs,
bytes_per_second,
block_align,
bit_depth,
)
if not (dkind in ("i", "u")):
# add cbSize field for non-PCM files
fmt_chunk_data += b"\x00\x00"
header_data += struct.pack("<I", len(fmt_chunk_data))
header_data += fmt_chunk_data
# fact chunk (non-PCM files)
if not (dkind in ("i", "u")):
header_data += b"fact"
header_data += struct.pack("<II", 4, data.shape[0])
# check data size (needs to be immediately before the data chunk)
if ((len(header_data) - 4 - 4) + (4 + 4 + data.nbytes)) > 0xFFFFFFFF:
raise ValueError("Data exceeds wave file size limit")
fid.write(header_data)
# data chunk
fid.write(b"data")
fid.write(struct.pack("<I", data.nbytes))
if data.dtype.byteorder == ">" or (
data.dtype.byteorder == "=" and sys.byteorder == "big"
):
data = data.byteswap()
_array_tofile(fid, data)
# Determine file size and place it in correct
# position at start of the file.
size = fid.tell()
fid.seek(4)
fid.write(struct.pack("<I", size - 8))
finally:
if not hasattr(filename, "write"):
fid.close()
else:
fid.seek(0)
def _array_tofile(fid, data):
# ravel gives a c-contiguous buffer
fid.write(data.ravel().view("b").data)

@ -0,0 +1,11 @@
[mypy]
[mypy-setuptools.*]
ignore_missing_imports = True
[mypy-librosa.*]
ignore_missing_imports = True
[mypy-onnxruntime.*]
ignore_missing_imports = True

@ -0,0 +1,7 @@
cython>=0.29.0,<1
espeak-phonemizer>=1.1.0,<2
librosa>=0.9.2,<1
numpy>=1.19.0
onnxruntime~=1.11.0
pytorch-lightning~=1.7.0
torch~=1.11.0

@ -0,0 +1,7 @@
black==22.3.0
coverage==5.0.4
flake8==3.7.9
mypy==0.910
pylint==2.10.2
pytest==5.4.1
pytest-cov==2.8.1

@ -0,0 +1,29 @@
#!/usr/bin/env bash
# Runs formatters, linters, and type checkers on Python code.
set -eo pipefail
# Directory of *this* script
this_dir="$( cd "$( dirname "$0" )" && pwd )"
base_dir="$(realpath "${this_dir}/..")"
# Path to virtual environment
: "${venv:=${base_dir}/.venv}"
if [ -d "${venv}" ]; then
# Activate virtual environment if available
source "${venv}/bin/activate"
fi
python_files=("${base_dir}/larynx_train")
# Format code
black "${python_files[@]}"
isort "${python_files[@]}"
# Check
flake8 "${python_files[@]}"
pylint "${python_files[@]}"
mypy "${python_files[@]}"

@ -0,0 +1,61 @@
#!/usr/bin/env python3
from collections import defaultdict
from pathlib import Path
import setuptools
from setuptools import setup
this_dir = Path(__file__).parent
module_dir = this_dir / "larynx_train"
# -----------------------------------------------------------------------------
# Load README in as long description
long_description: str = ""
readme_path = this_dir / "README.md"
if readme_path.is_file():
long_description = readme_path.read_text(encoding="utf-8")
requirements = []
requirements_path = this_dir / "requirements.txt"
if requirements_path.is_file():
with open(requirements_path, "r", encoding="utf-8") as requirements_file:
requirements = requirements_file.read().splitlines()
version_path = module_dir / "VERSION"
with open(version_path, "r", encoding="utf-8") as version_file:
version = version_file.read().strip()
# -----------------------------------------------------------------------------
setup(
name="larynx_train",
version=version,
description="A fast and local neural text to speech system",
long_description=long_description,
url="http://github.com/rhasspy/larynx",
author="Michael Hansen",
author_email="mike@rhasspy.org",
license="MIT",
packages=setuptools.find_packages(),
package_data={
"larynx_train": ["VERSION", "py.typed"],
},
install_requires=requirements,
extras_require={':python_version<"3.9"': ["importlib_resources"]},
entry_points={
"console_scripts": [
"larynx-train = larynx_train.__main__:main",
]
},
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Topic :: Text Processing :: Linguistic",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
],
keywords="rhasspy tts speech voice",
)
Loading…
Cancel
Save