3. Create an empty file in `/var/lib/kvmd/msd/meta/` with the exact name (case sensitive!) of the uploaded image. This will indicate Pi-KVM that the uploaded image is okay and can be used. For example:
Specifically to v2. This can be used for terminal access from the managed server to the Pi-KVM, or for any other purpose that requires a serial connection. In the last case, you only need to perform step 1 and reboot.
3. Create the directory `/etc/systemd/system/getty@ttyGS0.service.d` and add a file file named `ttyGS0.override` into it. Afterwards edit the file and copy this into it:
5. Once Pi-KVM is rebooted you will have access to a virtual serial port on the server that the USB is connected to. Use mingetty, screen, putty, or something like this to access the kvm from the server. The port is called `/dev/ttyAMA0`.
Specifically to v2. When combined with configuring a DNS server, FTP, or SMB (for example), this is a powerful way to extend the capabilities of Pi-KVM.
1. Edit `/etc/kvmd/override.yaml` (remove `{}` if this your first configuration entry) and add these lines:
``` yaml
otg:
devices:
ethernet:
enabled: true
driver: ecm
host_mac: 48:6f:73:74:50:43
kvm_mac: 42:61:64:55:53:42
```
The `host_mac` address will be used on the server's network interface. The `kvm_mac` means the address that will be assigned to the local interface on the Pi-KVM. The KVM interface will be called `usb0`.r's network interface. If the `host_mac` or `kvm_mac` is not specified, a random value will be used. The `driver` parameter means the protocol that will be used for the USB network. The default value is `ecm` so it can be passed it this example. Other possible values are `eem`, `ncm` and `rndis`.
2. Perform `reboot`.
:exclamation: When this feature is activated, the Pi-KVM interface and other ports will be available to the host. Use iptables for restrictions.