petals/cli/demo_deploy_server.sh
2022-07-31 03:54:19 +03:00

30 lines
1.4 KiB
Bash

#!/usr/bin/env bash
source ~/miniconda3/etc/profile.d/conda.sh
# If you use anaconda: source ~/anaconda/etc/profile.d/conda.sh
if conda env list | grep ".*bloom-demo-benchmark.*" >/dev/null 2>/dev/null; then
conda activate bloom-demo-benchmark
else
conda create -y --name bloom-demo-benchmark python=3.8.12 pip
conda activate bloom-demo-benchmark
conda install -y -c conda-forge cudatoolkit-dev==11.3.1 cudatoolkit==11.3.1 cudnn==8.2.1.32
pip install -i https://pypi.org/simple torch==1.12.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html
pip install -i https://test.pypi.org/simple/ bitsandbytes-cuda113
pip install -i https://pypi.org/simple -r demo-requirements.txt
fi
# Please set up
INITIAL_PEER="/ip4/172.27.77.65/tcp/38457/p2p/QmWCiRzNYhtSUdPT3toMjFpG9BWPMrrce4WYGWCaWqrESV"
MODEL_NAME="bigscience/test-bloomd"
HOST_MADDR="/ip4/0.0.0.0/tcp/30000"
SERVER_ID_PATH="./server.id"
GPU_ID="0"
NUM_BLOCKS="3" # one converted block consumes ~3Gb
export OMP_NUM_THREADS="16" # just in case
CUDA_VISIBLE_DEVICES=${GPU_ID} python -m cli.run_server --converted_model_name_or_path ${MODEL_NAME} --torch_dtype float16 --initial_peer ${INITIAL_PEER} \
--compression BLOCKWISE_8BIT --identity_path ${SERVER_ID_PATH} --host_maddrs ${HOST_MADDR} \
--num_blocks ${NUM_BLOCKS} --load_in_8bit