mirror of
https://github.com/bigscience-workshop/petals
synced 2024-11-04 06:00:12 +00:00
f0c7383181
- finish renaming RemoteSequenceInfo -> RemoteSequenceManager (why: if it was an *Info, user would expect it to be similar - to a dataclass; whereas in actuality, the class is doing heavy network interactions on its own) - implement RemoteSequenceManager.make_sequence (from https://pastebin.com/uXgy2U8B ) - make RemoteSequentialInferenceSession use RemoteSequenceManager.make_sequence - make tests pass again - make it possible to create inference session without RemoteTransformerBlock - make a standalone test for RemoteSequential - rollback convert-model Co-authored-by: Tim Dettmers <tim.dettmers@gmail.com>
89 lines
3.7 KiB
Python
89 lines
3.7 KiB
Python
######
|
|
# Warning:torch this test is a work in progress. It will be modified soon.
|
|
# - if you want more stable tests, see test_block_exact_match
|
|
# - if you want to figure out chained inference, ask yozh
|
|
|
|
|
|
import hivemind
|
|
import pytest
|
|
import torch
|
|
import transformers
|
|
from hivemind.moe.expert_uid import UID_DELIMITER, ExpertInfo
|
|
from test_utils import *
|
|
|
|
from src.bloom.from_pretrained import load_pretrained_block
|
|
from src.client.remote_block import RemoteTransformerBlock
|
|
from src.dht_utils import get_remote_module
|
|
|
|
|
|
@pytest.mark.forked
|
|
def test_forward_backward_exact_match(atol_forward=1e-4, atol_backward=1e-4, seq_length=1):
|
|
dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
|
|
config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
|
|
remote_block = get_remote_module(dht, f"{MODEL_NAME}{UID_DELIMITER}0")
|
|
assert remote_block is not None, f"Could not find {MODEL_NAME}{UID_DELIMITER}0 in DHT"
|
|
assert isinstance(remote_block, RemoteTransformerBlock)
|
|
|
|
_ = remote_block.info # lazy-init info now, because otherwise we will _break_ info init by chaning _info
|
|
remote_block._info = ExpertInfo(f"{MODEL_NAME}.3 {MODEL_NAME}.4 {MODEL_NAME}.5", remote_block._info.peer_id)
|
|
|
|
ref_blocks = [
|
|
load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch.float32),
|
|
load_pretrained_block(MODEL_NAME, 4, torch_dtype=torch.float32),
|
|
load_pretrained_block(MODEL_NAME, 5, torch_dtype=torch.float32),
|
|
]
|
|
inputs = torch.randn(1, seq_length, config.hidden_size, requires_grad=True)
|
|
outputs_rpc = remote_block.forward(inputs)[0]
|
|
outputs_rpc.sum().backward()
|
|
grads_rpc = inputs.grad
|
|
|
|
inputs.grad = None
|
|
hidden_states = inputs
|
|
for ref_block in ref_blocks:
|
|
hidden_states = ref_block.forward(hidden_states)[0]
|
|
outputs_ref = hidden_states
|
|
outputs_ref.sum().backward()
|
|
grads_ref = inputs.grad
|
|
|
|
assert torch.allclose(outputs_ref, outputs_rpc, rtol=0, atol=atol_forward)
|
|
assert torch.allclose(grads_ref, grads_rpc, rtol=0, atol=atol_backward)
|
|
|
|
|
|
@pytest.mark.forked
|
|
def test_chained_inference_exact_match(atol_inference=1e-4):
|
|
dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
|
|
config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
|
|
remote_block = get_remote_module(dht, f"{MODEL_NAME}{UID_DELIMITER}0")
|
|
assert remote_block is not None, f"Could not find {MODEL_NAME}{UID_DELIMITER}0 in DHT"
|
|
assert isinstance(remote_block, RemoteTransformerBlock)
|
|
|
|
_ = remote_block.info # lazy-init info now, because otherwise we will _break_ info init by chaning _info
|
|
remote_block._info = ExpertInfo(f"{MODEL_NAME}.3 {MODEL_NAME}.4", remote_block._info.peer_id)
|
|
|
|
inputs = torch.randn(1, 8, config.hidden_size)
|
|
|
|
outputs_inference = []
|
|
with remote_block.inference_session() as sess:
|
|
for i in range(inputs.shape[1]):
|
|
outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
|
|
outputs_inference = torch.cat(outputs_inference, dim=1)
|
|
|
|
ref_blocks = [
|
|
load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch.float32),
|
|
load_pretrained_block(MODEL_NAME, 4, torch_dtype=torch.float32),
|
|
]
|
|
outputs_ref = []
|
|
caches = [None, None]
|
|
for i in range(inputs.shape[1]):
|
|
new_caches = []
|
|
hidden_states = inputs[:, i : i + 1, :]
|
|
for ref_block, cache in zip(ref_blocks, caches):
|
|
with torch.no_grad():
|
|
hidden_states, new_cache = ref_block.forward(hidden_states, use_cache=True, layer_past=cache)
|
|
new_caches.append(new_cache)
|
|
|
|
outputs_ref.append(hidden_states)
|
|
caches = new_caches
|
|
outputs_ref = torch.cat(outputs_ref, dim=1)
|
|
assert torch.allclose(outputs_ref, outputs_inference, rtol=0, atol=atol_inference)
|