petals/tests/test_chained_calls.py
Pavel Samygin 0be21775af
remove transformer block, implement as sequential of size 1 (#54)
* remove transformer block, implement as sequence size 1
* reimplement get_remote_module
* fix readme

Co-authored-by: Alexander Borzunov <hxrussia@gmail.com>
Co-authored-by: Aleksandr Borzunov <borzunov.alexander@gmail.com>
2022-09-01 04:26:31 +03:00

80 lines
3.0 KiB
Python

######
# Warning:torch this test is a work in progress. It will be modified soon.
# - if you want more stable tests, see test_block_exact_match
# - if you want to figure out chained inference, ask yozh
import hivemind
import pytest
import torch
from test_utils import *
import src
from src.bloom.from_pretrained import load_pretrained_block
from src.client.remote_sequential import RemoteSequential
from src.dht_utils import get_remote_sequence
@pytest.mark.forked
def test_forward_backward_exact_match(atol_forward=1e-4, atol_backward=1e-4, seq_length=1):
dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
config = src.DistributedBloomConfig.from_pretrained(MODEL_NAME)
remote_blocks = get_remote_sequence(dht, 3, 6, config)
assert isinstance(remote_blocks, RemoteSequential)
ref_blocks = [
load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch.float32),
load_pretrained_block(MODEL_NAME, 4, torch_dtype=torch.float32),
load_pretrained_block(MODEL_NAME, 5, torch_dtype=torch.float32),
]
inputs = torch.randn(1, seq_length, config.hidden_size, requires_grad=True)
outputs_rpc = remote_blocks.forward(inputs)
outputs_rpc.sum().backward()
grads_rpc = inputs.grad
inputs.grad = None
hidden_states = inputs
for ref_block in ref_blocks:
hidden_states = ref_block.forward(hidden_states)[0]
outputs_ref = hidden_states
outputs_ref.sum().backward()
grads_ref = inputs.grad
assert torch.allclose(outputs_ref, outputs_rpc, rtol=0, atol=atol_forward)
assert torch.allclose(grads_ref, grads_rpc, rtol=0, atol=atol_backward)
@pytest.mark.forked
def test_chained_inference_exact_match(atol_inference=1e-4):
dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
config = src.DistributedBloomConfig.from_pretrained(MODEL_NAME)
remote_blocks = get_remote_sequence(dht, 3, 5, config)
assert isinstance(remote_blocks, RemoteSequential)
inputs = torch.randn(1, 8, config.hidden_size)
outputs_inference = []
with remote_blocks.inference_session(max_length=inputs.shape[1]) as sess:
for i in range(inputs.shape[1]):
outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
outputs_inference = torch.cat(outputs_inference, dim=1)
ref_blocks = [
load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch.float32),
load_pretrained_block(MODEL_NAME, 4, torch_dtype=torch.float32),
]
outputs_ref = []
caches = [None, None]
for i in range(inputs.shape[1]):
new_caches = []
hidden_states = inputs[:, i : i + 1, :]
for ref_block, cache in zip(ref_blocks, caches):
with torch.no_grad():
hidden_states, new_cache = ref_block.forward(hidden_states, use_cache=True, layer_past=cache)
new_caches.append(new_cache)
outputs_ref.append(hidden_states)
caches = new_caches
outputs_ref = torch.cat(outputs_ref, dim=1)
assert torch.allclose(outputs_ref, outputs_inference, rtol=0, atol=atol_inference)