You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
petals/src/server/handler.py

310 lines
15 KiB
Python

import contextlib
from typing import AsyncIterator, Dict, List, Optional, Sequence, Union
import torch
from hivemind import (
DHT,
MSGPackSerializer,
P2PContext,
TensorDescriptor,
deserialize_torch_tensor,
nested_flatten,
serialize_torch_tensor,
)
from hivemind.moe.server.connection_handler import ConnectionHandler
from hivemind.p2p.p2p_daemon import DEFAULT_MAX_MSG_SIZE
from hivemind.proto import runtime_pb2
from hivemind.utils import as_aiter
from hivemind.utils.asyncio import anext
from hivemind.utils.streaming import split_for_streaming
from src.data_structures import CHAIN_DELIMITER, ModuleUID
from src.server.backend import TransformerBackend
from src.utils.misc import DUMMY, is_dummy
class TransformerConnectionHandler(ConnectionHandler):
"""Handles three request types: forward, backward and forward-incremental (inference)"""
module_backends: Dict[ModuleUID, TransformerBackend]
def __init__(self, dht: DHT, module_backends: Dict[str, TransformerBackend], inference_max_length: int):
super().__init__(dht, module_backends)
for module_backend in self.module_backends.values():
assert isinstance(module_backend, TransformerBackend)
self.inference_max_length = inference_max_length
async def rpc_inference(
self,
requests: AsyncIterator[runtime_pb2.ExpertRequest],
context: P2PContext,
) -> AsyncIterator[runtime_pb2.ExpertRequest]:
"""Compute a single step of inference using attention cache; update attention cache accordingly."""
try:
print("OPENED RPC_INFERENCE")
request = await anext(requests)
requested_uids = self._check_uids(request.uid)
metadata = MSGPackSerializer.loads(request.metadata) if request.metadata else {}
requested_backends = tuple(self.module_backends[uid] for uid in requested_uids)
max_length = metadata.get("max_length")
if not requested_uids:
raise ValueError("User must specify at least one block for inference, but got none")
assert isinstance(max_length, int), f"rpc_inference metadata must contain int max_length, got {max_length}"
if not 0 <= max_length <= self.inference_max_length:
raise ValueError(f"Cannot allocate KV cache for {max_length} tokens, max = {self.inference_max_length}")
batch_size = request.tensors[0].size[0] if request.tensors else 1
cache_metadata = torch.tensor(
[[-1, -1] for _ in range(batch_size)], dtype=torch.int64
) # [cache_handle, prefix_length]
prefix_length = 0
async with self._allocate_caches(requested_backends, batch_size, max_length) as cache_handles:
assert len(cache_handles) == len(requested_backends)
while request.tensors: # iterate while user is willing to supply tensors
hidden_states = [deserialize_torch_tensor(tensor) for tensor in request.tensors]
length_increment = hidden_states[0].shape[1] # how many tokens are added this step (in each seq)
if prefix_length + length_increment > max_length:
raise ValueError(
f"Maximum length exceeded: prefix {prefix_length} + current {length_increment}"
f" exceeds pre-allocated maximum {max_length}"
)
# Cast inputs to backend dtype
hidden_states = [tensor.to(requested_backends[0].dtype) for tensor in hidden_states]
# run request tensors through all requested modules, update caches
for backend, cache_handle in zip(requested_backends, cache_handles):
cache_metadata[:, 0], cache_metadata[:, 1] = cache_handle, prefix_length
assert (
len(hidden_states) == 1 and hidden_states[0].ndim == 3
), f"inputs to {type(backend)} must be a list with a single 3d tensor of hidden states"
hidden_states = await backend.inference_pool.submit_task(cache_metadata, *hidden_states)
assert isinstance(hidden_states, (list, tuple))
assert len(hidden_states) == 1 and hidden_states[0].ndim == 3
# serialize and send last layer outputs
yield runtime_pb2.ExpertResponse(
tensors=[
serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True)
for result, proto in zip(
hidden_states, nested_flatten(requested_backends[-1].outputs_schema)
)
]
)
# prepare for next step
prefix_length += hidden_states[0].shape[1]
request = await (anext(requests))
finally:
print("CLOSED RPC_INFERENCE")
async def rpc_forward(self, request: runtime_pb2.ExpertRequest, context: P2PContext) -> runtime_pb2.ExpertResponse:
# Parse request and prepare backends
flat_inputs = [deserialize_torch_tensor(tensor) for tensor in request.tensors]
requested_uids = self._check_uids(request.uid)
requested_backends = tuple(self.module_backends[uid] for uid in requested_uids)
hidden_states = await _rpc_forward(*flat_inputs, requested_backends=requested_backends)
assert isinstance(hidden_states, torch.Tensor) and hidden_states.ndim == 3
# Serialize output and respond to client
return runtime_pb2.ExpertResponse(
tensors=[
serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True)
for result, proto in zip((hidden_states,), nested_flatten(requested_backends[-1].outputs_schema))
]
)
async def rpc_forward_stream(
self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext
) -> AsyncIterator[runtime_pb2.ExpertRequest]:
# Parse requests and prepare backends
uid_str, flat_inputs = await self._gather_inputs(requests, context)
requested_uids = self._check_uids(uid_str)
requested_backends = tuple(self.module_backends[uid] for uid in requested_uids)
hidden_states = await _rpc_forward(*flat_inputs, requested_backends=requested_backends)
assert isinstance(hidden_states, torch.Tensor) and hidden_states.ndim == 3, "hidden_states must be a 3d tensor"
# Serialize the overall output
serialized_output = [
serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True)
for result, proto in zip((hidden_states,), nested_flatten(requested_backends[-1].outputs_schema))
]
# Split the serialized_output for streaming and respond to client
output_split = [
part for tensor in serialized_output for part in split_for_streaming(tensor, DEFAULT_MAX_MSG_SIZE)
]
async for part in as_aiter(*output_split):
yield runtime_pb2.ExpertResponse(tensors=[part])
async def rpc_backward(self, request: runtime_pb2.ExpertRequest, context: P2PContext) -> runtime_pb2.ExpertResponse:
# Parse requests and prepare backends
flat_tensors = [deserialize_torch_tensor(tensor) for tensor in request.tensors]
requested_uids = self._check_uids(request.uid)
requested_backends = tuple(self.module_backends[uid] for uid in requested_uids)
grads = await _rpc_backward(*flat_tensors, requested_backends=requested_backends)
# Modify grad_inputs_schema to support grad_prompts
assert len(requested_backends[0].args_schema) == 1 and len(grads) in (1, 2) # TODO generalize
grad_inputs_schema_with_prompts = (
requested_backends[0].args_schema * len(grads),
requested_backends[0].kwargs_schema,
) # TODO generalize
# Serialize the overall grad_input and respond
return runtime_pb2.ExpertResponse(
tensors=[
serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True)
for result, proto in zip(grads, nested_flatten(grad_inputs_schema_with_prompts))
]
)
async def rpc_backward_stream(
self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext
) -> AsyncIterator[runtime_pb2.ExpertResponse]:
uids_header, flat_tensors = await self._gather_inputs(requests, context)
requested_uids = self._check_uids(uids_header)
requested_backends = tuple(self.module_backends[uid] for uid in requested_uids)
grads = await _rpc_backward(*flat_tensors, requested_backends=requested_backends)
# Modify grad_inputs_schema to support grad_prompts
assert len(requested_backends[0].args_schema) == 1 and len(grads) in (1, 2) # TODO generalize
grad_inputs_schema_with_prompts = (
requested_backends[0].args_schema * len(grads),
requested_backends[0].kwargs_schema,
) # TODO generalize
# Serialize the overall grad_inputs
serialized_grad_inputs = [
serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True)
for result, proto in zip(grads, nested_flatten(grad_inputs_schema_with_prompts))
]
# Split the serialized_grad_inputs for streaming and respond
output_split = [
part for tensor in serialized_grad_inputs for part in split_for_streaming(tensor, DEFAULT_MAX_MSG_SIZE)
]
async for part in as_aiter(*output_split):
yield runtime_pb2.ExpertResponse(tensors=[part])
def _check_uids(self, uids: str) -> Sequence[ModuleUID]:
"""Check that the first request to rpc_inference is valid"""
uids = (uids or "").split(CHAIN_DELIMITER)
if not uids:
raise RuntimeError("User did not provide any uids")
for uid in uids:
if uid not in self.module_backends:
raise RuntimeError(f"Remote peer does not serve {uid}")
return tuple(uids)
@contextlib.asynccontextmanager
async def _allocate_caches(
self, backends: Sequence[TransformerBackend], batch_size: int, max_length: int
) -> Sequence[int]:
"""Allocate memory caches for each transformer block, return cache handles"""
async with contextlib.AsyncExitStack() as stack:
handles = []
for backend in backends:
num_heads = backend.module.self_attention.num_heads
head_dim = backend.module.self_attention.head_dim
cache_descriptor = TensorDescriptor(
size=(2, batch_size, max_length, num_heads, head_dim), dtype=backend.dtype
)
# [key_or_value, batch_size, max_length, num_heads, head_dim]
handles.append(await stack.enter_async_context(backend.memory_cache.allocate_cache(cache_descriptor)))
yield handles
async def _rpc_forward(*flat_tensors: torch.Tensor, requested_backends: Sequence[TransformerBackend]) -> torch.Tensor:
"""
Run forward pass on deserialized inputs and prompts, used by rpc_forward and rpc_forward_stream
:param flat_tensors: a list of tensors that includes first layer inputs, optional prompts and extra tensors
:note: some input tensors can be missing, in which case they will be replaced with dummy tensors (see is_dummy)
:param requested_backends: a sequence of transformer blocks in the same order as they appear in forward pass
:returns: hidden states after the last layer [batch_size, seq_length, hid_size]
"""
hidden_states, *prompts = flat_tensors
dtype = requested_backends[0].dtype
# check parse input tensors and cast dtypes
hidden_states = hidden_states.to(dtype)
assert hidden_states.ndim == 3
if not prompts or is_dummy(prompts[0]):
prompts = [DUMMY] * len(requested_backends)
pre_seq_len = 0
else:
prompts = [prompts[0].to(requested_backends[0].dtype)]
prompts = [p.squeeze(0) for p in prompts[0].split(1)]
pre_seq_len = prompts[0].shape[-2]
# Run a chain of requested backends
for backend, prompt in zip(requested_backends, prompts):
if not is_dummy(prompt):
hidden_states[:, :pre_seq_len] += prompt
(hidden_states,) = await backend.forward_pool.submit_task(hidden_states)
assert isinstance(hidden_states, torch.Tensor)
assert (
hidden_states.ndim == 3
), f"inputs to {type(backend)} must be a list with a single 3d tensor of hidden states"
# Serialize the overall output
return hidden_states
async def _rpc_backward(
*flat_tensors: torch.Tensor, requested_backends: Sequence[TransformerBackend]
) -> Union[torch.Tensor, Sequence[torch.Tensor]]:
inputs, grad_outputs, *prompts = flat_tensors
# Cast inputs & grad outputs to backend dtype
inputs = inputs.to(requested_backends[0].dtype)
grad_outputs = grad_outputs.to(requested_backends[-1].dtype)
if not prompts or is_dummy(prompts[0]):
prompts = [DUMMY] * len(requested_backends)
pre_seq_len = 0
else:
prompts = [prompts[0].to(requested_backends[0].dtype)]
prompts = [p.squeeze(0) for p in prompts[0].split(1)]
pre_seq_len = prompts[0].shape[-2]
# Run a forward chain to collect intermediate inputs
# Note that we do not forward for the last module since we do not need its output
inter_inputs = []
for backend, prompt in zip(requested_backends[:-1], prompts[:-1]):
assert inputs.ndim == 3, f"inputs to {type(backend)} must be a single 3d tensor of hidden states"
if not is_dummy(prompt):
inputs[:, :pre_seq_len] += prompt
inter_inputs.append(inputs)
(inputs,) = await backend.forward_pool.submit_task(inputs)
assert isinstance(inputs, torch.Tensor)
if not is_dummy(prompts[-1]):
inputs[:, :pre_seq_len] += prompts[-1]
inter_inputs.append(inputs)
assert len(inter_inputs) == len(prompts) == len(requested_backends), "internal shape error during backward"
grad_prompts_reversed = []
# Run a chain of requested backends
for inp, prompt, backend in zip(*map(reversed, (inter_inputs, prompts, requested_backends))):
(grad_outputs,) = await backend.backward_pool.submit_task(inp, grad_outputs)
assert isinstance(grad_outputs, torch.Tensor)
if not is_dummy(prompt):
grad_prompts_reversed.append(grad_outputs[:, :pre_seq_len].unsqueeze(0))
grad_prompts = torch.cat(grad_prompts_reversed[::-1], dim=0) if grad_prompts_reversed else DUMMY
return [grad_outputs] if is_dummy(grad_prompts) else [grad_outputs, grad_prompts] # TODO un-duct-tape