petals/benchmarks/benchmark_training.py
Alexander Borzunov d126ee3053
Add benchmark scripts (#319)
This PR:

- Adds benchmark scripts for inference, forward pass, and full training step (e.g. used for experiments in our paper).
- Fixes bug with dtypes in `petals.DistributedBloomForSequenceClassification`.
- (minor refactor) Moves `DTYPE_MAP` to `petals.constants` as a useful constant.
2023-06-30 01:12:59 +04:00

102 lines
3.6 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import multiprocessing as mp
from time import perf_counter
import numpy as np
import torch
from hivemind.utils.logging import get_logger
from petals import AutoDistributedModelForCausalLM, AutoDistributedModelForSequenceClassification
from petals.constants import DTYPE_MAP, PUBLIC_INITIAL_PEERS
logger = get_logger()
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="bigscience/bloom")
parser.add_argument("--device", type=str, default="cpu")
parser.add_argument("--task", type=str, default="cls")
parser.add_argument("--initial_peers", type=str, nargs="+", default=PUBLIC_INITIAL_PEERS)
parser.add_argument("--torch_dtype", type=str, default="bfloat16")
parser.add_argument("--n_processes", type=str, default=1)
parser.add_argument("--seq_len", type=int, default=128)
parser.add_argument("--pre_seq_len", type=int, default=16)
parser.add_argument("--n_steps", type=int, default=10)
parser.add_argument("--batch_size", type=int, required=True)
parser.add_argument("--warmup_steps", type=int, default=1)
args = parser.parse_args()
assert args.task in ["cls", "causal_lm"]
if args.n_processes == "n_gpus":
args.n_processes = torch.cuda.device_count()
else:
args.n_processes = int(args.n_processes)
processes = [mp.Process(target=benchmark_training, args=(i, args)) for i in range(args.n_processes)]
for proc in processes:
proc.start()
for proc in processes:
proc.join()
def benchmark_training(process_idx, args):
if args.task == "cls":
model = AutoDistributedModelForSequenceClassification.from_pretrained(
args.model,
initial_peers=args.initial_peers,
torch_dtype=DTYPE_MAP[args.torch_dtype],
tuning_mode="deep_ptune",
pre_seq_len=args.pre_seq_len,
num_labels=2,
)
elif args.task == "causal_lm":
model = AutoDistributedModelForCausalLM.from_pretrained(
args.model,
initial_peers=args.initial_peers,
torch_dtype=DTYPE_MAP[args.torch_dtype],
tuning_mode="deep_ptune",
pre_seq_len=args.pre_seq_len,
)
model = model.to(args.device)
opt = torch.optim.Adam(model.parameters())
logger.info(f"Created model: {process_idx=} {model.device=}")
torch.manual_seed(42)
fwd_times = []
bwd_times = []
for step in range(args.n_steps):
input_ids = torch.randint(0, model.config.vocab_size, size=(args.batch_size, args.seq_len), device=args.device)
if args.task == "cls":
labels = torch.randint(0, 2, size=[args.batch_size], device=args.device)
else:
labels = input_ids
logger.info(f"{process_idx=} {step=} Forward")
start_time = perf_counter()
outputs = model(input_ids, labels=labels)
fwd_times.append(perf_counter() - start_time)
logger.info(f"{process_idx=} {step=} Backward")
start_time = perf_counter()
outputs.loss.backward()
bwd_times.append(perf_counter() - start_time)
logger.info(f"{process_idx=} {step=} Optimizer step")
opt.step()
opt.zero_grad()
if step >= args.warmup_steps:
fwd_speed = input_ids.numel() / np.mean(fwd_times[1:])
bwd_speed = input_ids.numel() / np.mean(bwd_times[1:])
logger.info(f"{process_idx=} Fwd speed: {fwd_speed:.2f} | Bwd speed: {bwd_speed:.2f}")
logger.info(f"Final result: {process_idx=} {fwd_speed=:.2f} | {bwd_speed=:.2f}")
if __name__ == "__main__":
main()