petals/cli/convert_model.py
justheuristic a2634001e9
Reduce vocabulary size in test model, fix bug in routing when overlapped (#45)
This PR reduces this vocabulary size to save memory during conversion, keeping only the first 50k tokens
As a result, 

* tests that load client-side embeddings need significantly less RAM
* we can now run CI tests with 4 servers instead of 2 - needed to test routing - see bugs uncovered
* some of the servers now use load balancing
* CI convert_model now takes 4-5 minutes (was 6-7)
2022-08-17 18:50:52 +03:00

94 lines
4.5 KiB
Python

import argparse
import os
import psutil
import torch.backends.quantized
import torch.nn as nn
import transformers
from hivemind.utils.logging import get_logger, use_hivemind_log_handler
from huggingface_hub import Repository
from tqdm.auto import tqdm
from src import BloomModel
from src.bloom.from_pretrained import BLOCK_BRANCH_PREFIX, CLIENT_BRANCH
from src.client import DistributedBloomConfig
use_hivemind_log_handler("in_root_logger")
logger = get_logger(__file__)
DTYPE_MAP = dict(bfloat16=torch.bfloat16, float16=torch.float16, float32=torch.float32, auto="auto")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Load bloom layers and convert to 8-bit using torch quantization.")
parser.add_argument("--model", type=str, default="bigscience/bloom-6b3", help="Model name for from_pretrained")
parser.add_argument("--revision", type=str, default=None, help="Optional commit id from HF hub")
parser.add_argument("--torch_dtype", type=str, default="auto", help="Load initial model in this dtype")
parser.add_argument("--output_path", type=str, default="./converted_model", help="Track output repo to this folder")
parser.add_argument("--output_repo", type=str, default="bigscience/test-bloomd", help="Push to this HF hub repo")
parser.add_argument("--client_branch", type=str, default=CLIENT_BRANCH, help="Save client version to this branch")
parser.add_argument(
"--block_branch_prefix", type=str, default=BLOCK_BRANCH_PREFIX, help="Save blocks to branches with this prefix"
)
parser.add_argument(
"--commit_message", type=str, default="push-o-matic", help="Use this commit message for all parts"
)
parser.add_argument("--use_auth_token", type=str, default=None, help="auth token for from_pretrained")
parser.add_argument("--resize_token_embeddings", type=int, default=None, help="change the vocabulary size")
args = parser.parse_args()
free_ram_gb = psutil.virtual_memory().available / 2**30
if args.model == "bigscience/bloom" and free_ram_gb < 400:
logger.warning(f"ACHTUNG! converting bloom-176b will use up 350-400GB RAM, you have {free_ram_gb:.3f} free")
assert args.torch_dtype in DTYPE_MAP, f"torch_dtype must be one of {list(DTYPE_MAP.keys())}"
if os.path.exists(args.output_path) and (
len(os.listdir(args.output_path)) != 0 or not os.path.isdir(args.output_path)
):
raise FileExistsError(f"Output path {args.output_path} already exists and is not an empty directory")
logger.info(f"Loading source model {args.model} (this may take a few minutes)")
config = DistributedBloomConfig.from_pretrained(
args.model, use_auth_token=args.use_auth_token, revision=args.revision
)
config.dht_prefix = args.output_repo
model = BloomModel.from_pretrained(
args.model, use_auth_token=args.use_auth_token, revision=args.revision, torch_dtype=DTYPE_MAP[args.torch_dtype]
)
if args.resize_token_embeddings:
logger.info(f"Resizing token embeddings, new size = {args.resize_token_embeddings}")
model.resize_token_embeddings(args.resize_token_embeddings)
config.vocab_size = args.resize_token_embeddings
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.model, use_auth_token=args.use_auth_token, revision=args.revision
)
os.makedirs(args.output_path, exist_ok=True)
repo = Repository(args.output_path, clone_from=args.output_repo, use_auth_token=args.use_auth_token)
repo.git_pull()
transformer_blocks = model.h
logger.info(
f"Saving transformer blocks to {args.output_repo}@{args.block_branch_prefix}0"
f" - {args.output_repo}@{args.block_branch_prefix}{len(transformer_blocks)}"
)
for i, block in enumerate(tqdm(transformer_blocks)):
repo.git_checkout(args.client_branch, create_branch_ok=True)
with repo.commit(
commit_message=args.commit_message, branch=args.block_branch_prefix + str(i), track_large_files=True
):
torch.save(block.state_dict(), "./pytorch_model.bin")
logger.info(f"Saving client-side modules to {args.output_repo}@{args.client_branch}")
repo.git_checkout(args.client_branch, create_branch_ok=True)
with repo.commit(commit_message=args.commit_message, branch=args.client_branch, track_large_files=True):
model.h = nn.ModuleList()
model.save_pretrained(".")
tokenizer.save_pretrained(".")
config.save_pretrained(".")
logger.info(f"Converted {args.model} and pushed to {args.output_repo}")