petals/tests/test_block_exact_match.py
Alexander Borzunov 056f22515a
Prioritize short inference, unmerge pools for long inference (#458)
Right now, long inference requests may occupy Runtime for a few seconds without giving it away to process short (most latency-sensitive requests). This PR fixes it by disallowing the merged pool for long requests and prioritizing the short ones.
2023-08-11 09:24:33 +04:00

44 lines
1.8 KiB
Python

import random
import pytest
import torch
from petals import AutoDistributedConfig, RemoteSequential
from petals.server.block_functions import MAX_SHORT_INFERENCE_TOKENS
from petals.server.from_pretrained import load_pretrained_block
from test_utils import *
@pytest.mark.forked
def test_remote_block_exact_match(atol_forward=1e-4, atol_inference=1e-3):
config = AutoDistributedConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS)
remote_sequential = RemoteSequential(config)
block_index = random.randint(0, config.num_hidden_layers - 1)
remote_block = remote_sequential[block_index]
inputs = torch.randn(1, MAX_SHORT_INFERENCE_TOKENS + 8, config.hidden_size)
outputs_forward = remote_block(inputs)
outputs_inference = []
with torch.inference_mode():
with remote_block.inference_session(max_length=inputs.shape[1]) as sess:
# Test long inference (unmerged inference pools)
outputs_inference.append(sess.step(inputs[:, : MAX_SHORT_INFERENCE_TOKENS + 1, :]))
# Test short inference (merged inference pools)
for i in range(MAX_SHORT_INFERENCE_TOKENS + 1, inputs.shape[1]):
outputs_inference.append(sess.step(inputs[:, i : i + 1, :]))
# test that max length is respected
with pytest.raises(ValueError, match=r"Maximum length exceeded") as exc_info:
sess.step(inputs[:, -1:, :])
assert "Maximum length exceeded" in repr(exc_info.value)
outputs_inference = torch.cat(outputs_inference, dim=1)
ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32)
(outputs_local,) = ref_block(inputs)
assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward)
assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)