mirror of
https://github.com/bigscience-workshop/petals
synced 2024-10-31 09:20:41 +00:00
40 lines
1.8 KiB
Python
40 lines
1.8 KiB
Python
import time
|
|
|
|
import hivemind
|
|
import pytest
|
|
import torch
|
|
|
|
from petals import AutoDistributedConfig, RemoteSequential
|
|
from petals.server.handler import CACHE_TOKENS_AVAILABLE
|
|
from test_utils import *
|
|
|
|
|
|
@pytest.mark.forked
|
|
def test_server_info(block_from: int = 2, block_to: int = 5, max_length: int = 100, max_length2: int = 50):
|
|
config = AutoDistributedConfig.from_pretrained(MODEL_NAME)
|
|
config.allowed_servers = ["QmNV5G3hq2UmAck2htEgsqrmPFBff5goFZAdmKDcZLBZLX"] # PeerID from server2.id
|
|
|
|
dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True)
|
|
blocks1 = RemoteSequential(config, dht=dht, start_block=block_from, end_block=block_to)
|
|
blocks2 = RemoteSequential(config, dht=dht, start_block=block_to - 1, end_block=block_to)
|
|
|
|
info_before = blocks1.sequence_manager.rpc_info
|
|
|
|
with blocks1.inference_session(max_length=max_length) as sess:
|
|
sess.step(torch.randn(1, 1, config.hidden_size))
|
|
blocks1.sequence_manager.state.rpc_info = None # invalidate cache
|
|
info_inside = blocks1.sequence_manager.rpc_info
|
|
|
|
with blocks2.inference_session(max_length=max_length2) as sess2:
|
|
sess2.step(torch.randn(1, 1, config.hidden_size))
|
|
blocks2.sequence_manager.state.rpc_info = None # invalidate cache
|
|
info_inside2 = blocks2.sequence_manager.rpc_info
|
|
|
|
time.sleep(0.1)
|
|
blocks1.sequence_manager.state.rpc_info = None # invalidate cache
|
|
info_after = blocks1.sequence_manager.rpc_info
|
|
|
|
assert info_before[CACHE_TOKENS_AVAILABLE] == info_after[CACHE_TOKENS_AVAILABLE]
|
|
assert info_before[CACHE_TOKENS_AVAILABLE] - info_inside[CACHE_TOKENS_AVAILABLE] == max_length * len(blocks1)
|
|
assert info_inside[CACHE_TOKENS_AVAILABLE] - info_inside2[CACHE_TOKENS_AVAILABLE] == max_length2 * len(blocks2)
|