You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
petals/src/petals/server/block_functions.py

231 lines
10 KiB
Python

"""
This module implements server-side computations on served blocks: forward, backward and inference; used by handler
"""
from __future__ import annotations
from typing import Any, AsyncIterator, Dict, Optional, Sequence, Tuple, Union
import torch
from hivemind.compression.serialization import deserialize_torch_tensor, serialize_torch_tensor
from hivemind.moe.expert_uid import ExpertUID
from hivemind.proto import runtime_pb2
from hivemind.utils.logging import get_logger
from hivemind.utils.nested import nested_flatten
from petals.data_structures import Handle, InferenceMetadata
from petals.server.backend import TransformerBackend
from petals.server.task_pool import PrioritizedTaskPool
from petals.server.task_prioritizer import TaskPrioritizerBase
from petals.utils.convert_block import QuantType
from petals.utils.misc import DUMMY, is_dummy
from petals.utils.packaging import unpack_args_kwargs
# We prioritize short inference requests and make them use a *merged* inference pool,
# so they are processed without interruptions and extra overheads
# TODO: Increase the NF4 threshold once bitsandbytes ships efficient NF4 kernel for parallel forward
MAX_SHORT_INFERENCE_TOKENS = 128
MAX_NF4_SHORT_INFERENCE_TOKENS = 1
logger = get_logger(__name__)
async def run_rpc_forward(
*flat_tensors: torch.Tensor,
requested_backends: Sequence[TransformerBackend],
active_adapter: str = "",
prioritizer: TaskPrioritizerBase,
points: int = 0,
args_structure: Any = None,
) -> torch.Tensor:
"""
Run forward pass on deserialized inputs and prompts, used by rpc_forward and rpc_forward_stream
:param flat_tensors: a list of tensors that includes first layer inputs, optional prompts and extra tensors
:note: some input tensors can be missing, in which case they will be replaced with dummy tensors (see is_dummy)
:param requested_backends: a sequence of transformer blocks in the same order as they appear in forward pass
:returns: hidden states after the last layer [batch_size, seq_length, hid_size]
"""
if args_structure is not None:
# TODO: kwargs currently is unused, it can be used later for peft-like adaptation
flat_tensors, kwargs = unpack_args_kwargs(flat_tensors, args_structure)
hidden_states, prompts, *_ = flat_tensors
dtype = requested_backends[0].dtype
# check parse input tensors and cast dtypes
hidden_states = hidden_states.to(dtype)
assert hidden_states.ndim == 3
if prompts is None or is_dummy(prompts):
prompts = [DUMMY] * len(requested_backends)
else:
prompts = [p.squeeze(0) for p in prompts.to(requested_backends[0].dtype).split(1, dim=0)]
# Run a chain of requested backends
for backend, prompt in zip(requested_backends, prompts):
if not is_dummy(prompt):
hidden_states[:, : prompt.shape[1]] += prompt
assert isinstance(backend.inference_pool, PrioritizedTaskPool), "petals support only prioritized pools"
priority = prioritizer.prioritize(
hidden_states, points=points / len(requested_backends), backend=backend, type="forward"
)
(hidden_states,) = await backend.forward_pool.submit_task(
hidden_states,
active_adapter,
priority=priority,
)
assert isinstance(hidden_states, torch.Tensor)
assert (
hidden_states.ndim == 3
), f"inputs to {type(backend)} must be a list with a single 3d tensor of hidden states"
return hidden_states
async def run_rpc_backward(
*flat_tensors: torch.Tensor,
requested_backends: Sequence[TransformerBackend],
active_adapter: str = "",
prioritizer: TaskPrioritizerBase,
points: int = 0,
args_structure: Any = None,
) -> Union[torch.Tensor, Sequence[torch.Tensor]]:
if args_structure is not None:
# TODO: kwargs currently is unused, it can be used later for peft-like adaptation
flat_tensors, kwargs = unpack_args_kwargs(flat_tensors, args_structure)
inputs, grad_outputs, prompts, *_ = flat_tensors
# Cast inputs & grad outputs to backend dtype
inputs = inputs.to(requested_backends[0].dtype)
grad_outputs = grad_outputs.to(requested_backends[-1].dtype)
if prompts is None or is_dummy(prompts):
prompts = [DUMMY] * len(requested_backends)
else:
prompts = [p.squeeze(0) for p in prompts.to(requested_backends[0].dtype).split(1, dim=0)]
# Run a forward chain to collect intermediate inputs
# Note that we do not forward for the last module since we do not need its output
inter_inputs = []
for backend, prompt in zip(requested_backends[:-1], prompts[:-1]):
assert inputs.ndim == 3, f"inputs to {type(backend)} must be a single 3d tensor of hidden states"
if not is_dummy(prompt):
inputs[:, : prompt.shape[1]] += prompt
inter_inputs.append(inputs)
assert isinstance(backend.inference_pool, PrioritizedTaskPool), "petals support only prioritized pools"
priority = prioritizer.prioritize(
inputs, points=points / len(requested_backends), backend=backend, type="forward_in_backward"
)
(inputs,) = await backend.forward_pool.submit_task(inputs, active_adapter, priority=priority)
assert isinstance(inputs, torch.Tensor)
if not is_dummy(prompts[-1]):
inputs[:, : prompts[-1].shape[1]] += prompts[-1]
inter_inputs.append(inputs)
assert len(inter_inputs) == len(prompts) == len(requested_backends), "internal shape error during backward"
grad_prompts_reversed = []
# Run a chain of requested backends
for inp, prompt, backend in zip(*map(reversed, (inter_inputs, prompts, requested_backends))):
assert isinstance(backend.inference_pool, PrioritizedTaskPool), "petals support only prioritized pools"
priority = prioritizer.prioritize(
inp, grad_outputs, points=points / len(requested_backends), backend=backend, type="backward"
)
(grad_outputs,) = await backend.backward_pool.submit_task(inp, grad_outputs, active_adapter, priority=priority)
assert isinstance(grad_outputs, torch.Tensor)
if not is_dummy(prompt):
grad_prompts_reversed.append(grad_outputs[:, : prompt.shape[1]].unsqueeze(0))
grad_prompts = torch.cat(grad_prompts_reversed[::-1], dim=0) if grad_prompts_reversed else DUMMY
return [grad_outputs] if is_dummy(grad_prompts) else [grad_outputs, grad_prompts] # TODO un-duct-tape
async def iterate_rpc_inference(
requested_uids: Sequence[ExpertUID],
requested_backends: Sequence[TransformerBackend],
active_adapter: Optional[str],
input_iterator: AsyncIterator[Tuple[runtime_pb2.ExpertRequest, dict]],
cache_handles: Sequence[Sequence[Handle]],
*,
max_length: int,
prioritizer: TaskPrioritizerBase,
points: int,
quant_type: QuantType,
args_structure: Any = None,
) -> AsyncIterator[Tuple[Sequence[runtime_pb2.Tensor], bool, Dict]]:
assert len(cache_handles) == len(requested_backends)
prefix_length = 0
point_per_piece = points / max_length if max_length > 0 else 0.0
async for request, step_metadata in input_iterator:
flat_tensors = tuple(deserialize_torch_tensor(tensor) for tensor in request.tensors)
if args_structure is not None:
# TODO: kwargs currently is unused, it can be used later for peft-like adaptation
flat_tensors, kwargs = unpack_args_kwargs(flat_tensors, args_structure)
hidden_states, prompts, hypo_ids, *_ = flat_tensors
batch_size, length_increment, _ = hidden_states.shape
# Cast inputs to backend dtype
hidden_states = hidden_states.to(requested_backends[0].dtype)
assert hypo_ids.dtype == torch.int64, f"hypo ids must be int64, got {hypo_ids.dtype}"
# parse deep prompts (optional argument)
has_prompts = prompts is not None and not is_dummy(prompts)
if not has_prompts:
prompts = [None] * len(requested_backends)
else:
prompts = [p.squeeze(0) for p in prompts.to(requested_backends[0].dtype).split(1, dim=0)]
prompts = [prompt if not is_dummy(prompt) else None for prompt in prompts]
if not (len(requested_backends) == len(prompts)):
raise ValueError(f"Received {len(prompts)} prompts for {len(requested_backends)} backends")
if prefix_length + length_increment > max_length:
raise ValueError(
f"Maximum length exceeded: prefix {prefix_length} + current {length_increment}"
f" exceeds pre-allocated maximum {max_length}"
)
merge_max_tokens = MAX_NF4_SHORT_INFERENCE_TOKENS if quant_type == QuantType.NF4 else MAX_SHORT_INFERENCE_TOKENS
can_merge_pools = batch_size * length_increment <= merge_max_tokens
priority = prioritizer.prioritize(
hidden_states,
hypo_ids,
points=point_per_piece,
requested_uids=requested_uids,
type="inference",
)
# A client may pass a tensor with 0 tokens. This is a special case that occurs, e.g.
# when user wants to pre-allocate cache or check that server *can* allocate that cache.
if hidden_states.numel() > 0:
assert hidden_states.ndim == 3, f"hidden states must be a single 3d tensor"
if can_merge_pools:
inference_infos = tuple(
InferenceMetadata(uid, prefix_length, tuple(handles), active_adapter)
for uid, handles in zip(requested_uids, cache_handles)
)
(hidden_states,) = await requested_backends[0].inference_pool.submit_task(
hidden_states, hypo_ids, inference_infos, *prompts, priority=priority
)
else:
for backend, uid, handles, prompt in zip(requested_backends, requested_uids, cache_handles, prompts):
inference_infos = (InferenceMetadata(uid, prefix_length, tuple(handles), active_adapter),)
(hidden_states,) = await backend.inference_pool.submit_task(
hidden_states, hypo_ids, inference_infos, prompt, priority=priority
)
# serialize and send last layer outputs
output_tensors = [
serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True)
for result, proto in zip((hidden_states,), nested_flatten(requested_backends[-1].outputs_schema))
]
can_push = not has_prompts
yield output_tensors, can_push, step_metadata
# prepare for next step
prefix_length += length_increment