You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
petals/src/petals/models/falcon/block.py

481 lines
20 KiB
Python

"""
Falcon intermediate layer
Based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/falcon/modeling_falcon.py
See commit history for authorship.
"""
import math
from functools import partial
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.models.falcon.modeling_falcon import (
FalconAttention,
FalconConfig,
FalconDecoderLayer,
FalconLinear,
FalconMLP,
FalconModel,
LayerNorm,
build_alibi_tensor,
dropout_add,
rotate_half,
)
KVCache = Tuple[torch.Tensor, torch.Tensor]
INFERENCE_MAX_LENGTH = 8192
def apply_rotary(query, key, cos, sin):
return (query * cos) + (rotate_half(query) * sin), (key * cos) + (rotate_half(key) * sin)
class OptimizedFalconRotaryEmbedding(nn.Module):
def __init__(self, head_dim: int, base=10000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.head_dim = head_dim
self.seq_len_cached = -1
self.cuda_graph = None
self.input_surface = None
self.static_outputs = None
def _optimized_apply_rotary(self, query, key, cos, sin):
if self.cuda_graph is None:
self.cuda_graph = torch.cuda.CUDAGraph()
self.input_surface = (query, key, cos, sin)
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for _ in range(3):
apply_rotary(*self.input_surface)
torch.cuda.current_stream().wait_stream(s)
with torch.cuda.graph(self.cuda_graph):
self.static_outputs = apply_rotary(*self.input_surface)
inputs = (query, key, cos, sin)
for static_input, data in zip(self.input_surface, inputs):
static_input.copy_(data)
self.cuda_graph.replay()
return tuple(o.detach() for o in self.static_outputs)
def cos_sin(self, seq_len: int, past_key_values_length: int, device="cpu", dtype=torch.bfloat16) -> torch.Tensor:
total_length = seq_len + past_key_values_length
if self.seq_len_cached == -1:
# warm up the cache
total_length = max(INFERENCE_MAX_LENGTH, total_length)
if total_length > self.seq_len_cached:
with torch.inference_mode(False):
self.seq_len_cached = total_length
t = torch.arange(total_length, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(device)
if dtype in [torch.float16, torch.bfloat16]:
emb = emb.float()
self.register_buffer("cos_cached", emb.cos()[None, :, :].type(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, :, :].type(dtype), persistent=False)
return (
self.cos_cached[:, past_key_values_length : seq_len + past_key_values_length].type(dtype),
self.sin_cached[:, past_key_values_length : seq_len + past_key_values_length].type(dtype),
)
def forward(self, query, key, past_key_values_length=0):
batch, seq_len, head_dim = query.shape
cos, sin = self.cos_sin(seq_len, past_key_values_length, query.device, query.dtype)
if seq_len == 1 and torch.is_inference_mode_enabled() and query.device.type == "cuda":
return self._optimized_apply_rotary(query, key, cos, sin)
else:
return apply_rotary(query, key, cos, sin)
def split_heads(
fused_qkv: torch.Tensor, num_heads: int, num_kv_heads: int, head_dim: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
batch, seq_len, _ = fused_qkv.shape
qkv = fused_qkv.view(batch, seq_len, -1, num_heads // num_kv_heads + 2, head_dim)
query, key, value = torch.split(qkv, [num_heads // num_kv_heads, 1, 1], dim=3)
key = torch.broadcast_to(key, query.shape)
value = torch.broadcast_to(value, query.shape)
query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
return query, key, value
class OptimizedFalconAttention(FalconAttention):
def __init__(self, config: FalconConfig):
nn.Module.__init__(self)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.split_size = self.hidden_size
self.hidden_dropout = config.hidden_dropout
if self.head_dim * self.num_heads != self.hidden_size:
raise ValueError(
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
f" {self.num_heads})."
)
self.maybe_rotary = OptimizedFalconRotaryEmbedding(config.head_dim) if config.rotary else lambda q, k, t: (q, k)
# Layer-wise attention scaling
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
self.beta = self.inv_norm_factor
if config.new_decoder_architecture:
qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
elif config.multi_query:
qkv_out_dim = self.hidden_size + 2 * self.head_dim
else:
qkv_out_dim = 3 * self.hidden_size
self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
self.new_decoder_architecture = config.new_decoder_architecture
self.multi_query = config.multi_query
self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
self.attention_dropout = nn.Dropout(config.attention_dropout)
self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1
if self.new_decoder_architecture:
self._split_heads = partial(
split_heads, num_heads=self.num_heads, num_kv_heads=self.num_kv_heads, head_dim=self.head_dim
)
self.split_graph = None
self.input_surface = None
self.static_outputs = None
def _optimized_split_heads(self, fused_qkv):
if self.split_graph is None:
self.split_graph = torch.cuda.CUDAGraph()
self.input_surface = fused_qkv
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for _ in range(3):
self._split_heads(fused_qkv)
torch.cuda.current_stream().wait_stream(s)
with torch.cuda.graph(self.split_graph):
self.static_outputs = self._split_heads(self.input_surface)
self.input_surface.copy_(fused_qkv)
self.split_graph.replay()
return tuple(o.detach() for o in self.static_outputs)
def forward(
self,
hidden_states: torch.Tensor,
alibi: Optional[torch.Tensor],
attention_mask: torch.Tensor,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
):
assert not output_attentions
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
if (
self.new_decoder_architecture
and hidden_states.size(1) == 1
and torch.is_inference_mode_enabled()
and hidden_states.device.type == "cuda"
):
query_layer, key_layer, value_layer = self._optimized_split_heads(fused_qkv)
else:
# 3 x [batch_size, seq_length, num_heads, head_dim]
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
num_kv_heads = self.num_heads
batch_size, query_length, _, _ = query_layer.shape
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, query_length, self.head_dim)
key_layer = key_layer.transpose(1, 2).reshape(
batch_size * num_kv_heads,
query_length,
self.head_dim,
)
value_layer = value_layer.transpose(1, 2).reshape(batch_size * num_kv_heads, query_length, self.head_dim)
past_kv_length = 0 if layer_past is None else layer_past[0].shape[1]
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length)
if layer_past is not None:
past_key, past_value = layer_past
# concatenate along seq_length dimension:
# - key: [batch_size * self.num_heads, kv_length, head_dim]
# - value: [batch_size * self.num_heads, kv_length, head_dim]
key_layer = torch.cat((past_key, key_layer), dim=1)
value_layer = torch.cat((past_value, value_layer), dim=1)
_, kv_length, _ = key_layer.shape
if use_cache:
present = (key_layer, value_layer)
else:
present = None
query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype)
if alibi is None:
attn_output = F.scaled_dot_product_attention(
query_layer_, key_layer_, value_layer_, attn_mask=attention_mask_float, dropout_p=0.0, is_causal=False
)
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
attn_output = attn_output.permute(0, 2, 1, 3)
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
output_tensor = self.dense(attn_output)
return output_tensor, present
else:
matmul_result = query_layer_ @ key_layer_.transpose(-1, -2)
# change view to [batch_size, num_heads, q_length, kv_length]
attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
input_dtype = attention_scores.dtype
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
attention_scores = attention_scores.to(torch.float32)
# Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by
# adding (alibi * self.inv_norm_factor) to attention_mask_float. I think this would be mathematically
# equivalent and more performant, but there might be a numerical difference. If you're reading this
# and you'd like to experiment and maybe file a PR, feel free!
attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
attention_logits *= self.inv_norm_factor
attention_probs = F.softmax(attention_logits + attention_mask_float, dim=-1, dtype=hidden_states.dtype)
# [batch_size, num_heads, q_length, kv_length]
attention_probs = self.attention_dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
# change view [batch_size, num_heads, q_length, kv_length]
attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)
# matmul: [batch_size * num_heads, q_length, head_dim]
context_layer = (attention_probs_reshaped @ value_layer_).flatten(0, 1)
# change view [batch_size, q_length, num_heads * head_dim]
context_layer = self._merge_heads(context_layer)
output_tensor = self.dense(context_layer)
if output_attentions:
return output_tensor, present, attention_probs
else:
return output_tensor, present
class OptimizedFalconDecoderLayer(FalconDecoderLayer):
def __init__(self, config: FalconConfig):
nn.Module.__init__(self)
hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.mlp = FalconMLP(config)
self.hidden_dropout = config.hidden_dropout
self.config = config
self.self_attention = OptimizedFalconAttention(config)
if self.config.alibi or not config.new_decoder_architecture:
if config.new_decoder_architecture:
# The layer norm before self-attention
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
# The layer norm before the MLP
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
else:
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
if not config.parallel_attn:
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
else:
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.ln_graph = None
self.static_input = None
self.static_outputs = None
def _optimized_apply_ln(self, hidden_states):
if self.ln_graph is None:
self.ln_graph = torch.cuda.CUDAGraph()
self.static_input = hidden_states
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for _ in range(3):
self.ln_attn(hidden_states)
self.ln_mlp(hidden_states)
torch.cuda.current_stream().wait_stream(s)
with torch.cuda.graph(self.ln_graph):
ln_attn_output = self.ln_attn(hidden_states)
ln_mlp_output = self.ln_mlp(hidden_states)
self.static_outputs = (ln_attn_output, ln_mlp_output)
self.static_input.copy_(hidden_states)
self.ln_graph.replay()
return tuple(o.detach() for o in self.static_outputs)
def forward(
self,
hidden_states: torch.Tensor,
alibi: Optional[torch.Tensor],
attention_mask: torch.Tensor,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
):
residual = hidden_states
if self.config.new_decoder_architecture:
if hidden_states.size(1) == 1 and torch.is_inference_mode_enabled() and hidden_states.device.type == "cuda":
attention_layernorm_out, mlp_layernorm_out = self._optimized_apply_ln(hidden_states)
else:
attention_layernorm_out = self.ln_attn(hidden_states)
mlp_layernorm_out = self.ln_mlp(hidden_states)
else:
attention_layernorm_out = self.input_layernorm(hidden_states)
attn_outputs = self.self_attention(
attention_layernorm_out,
layer_past=layer_past,
attention_mask=attention_mask,
alibi=alibi,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attention_output = attn_outputs[0]
if not self.config.new_decoder_architecture:
if self.config.parallel_attn:
mlp_layernorm_out = attention_layernorm_out
else:
residual = dropout_add(
attention_output, residual, self.config.attention_dropout, training=self.training
)
mlp_layernorm_out = self.post_attention_layernorm(residual)
outputs = attn_outputs[1:]
mlp_output = self.mlp(mlp_layernorm_out)
if self.config.new_decoder_architecture or self.config.parallel_attn:
mlp_output += attention_output
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
if use_cache:
outputs = (output,) + outputs
else:
outputs = (output,) + outputs[1:]
return outputs # hidden_states, present, attentions
class WrappedFalconBlock(OptimizedFalconDecoderLayer):
def forward(
self,
hidden_states: torch.Tensor,
*args,
attention_mask: Optional[torch.Tensor] = None,
alibi: Optional[torch.Tensor] = None,
layer_past: Optional[KVCache] = None,
use_cache: bool = False,
**kwargs,
):
assert attention_mask is None
batch_size, seq_length = hidden_states.shape[:2]
if layer_past is not None:
layer_past = self._reorder_cache_from_bloom_to_falcon(layer_past)
past_length = 0 if layer_past is None else layer_past[0].shape[1]
seq_length_with_past = seq_length + past_length
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
if alibi is None and self.config.alibi:
alibi = build_alibi_tensor(attention_mask, num_heads=self.num_heads, dtype=hidden_states.dtype)
attention_mask = FalconModel._prepare_attn_mask(attention_mask, (batch_size, seq_length), past_length)
outputs = super().forward(
hidden_states,
*args,
attention_mask=attention_mask,
alibi=alibi,
layer_past=layer_past,
use_cache=use_cache,
**kwargs,
)
if use_cache:
present_key_value = outputs[-1]
present_key_value = self._reorder_cache_from_falcon_to_bloom(present_key_value)
outputs = outputs[:-1] + (present_key_value,)
return outputs
def _reorder_cache_from_bloom_to_falcon(self, key_value: KVCache) -> KVCache:
key_states, value_states = key_value
key_states = key_states.permute(0, 2, 1)
assert key_states.shape == value_states.shape # Both are [batch_size * num_kv_heads, seq_len, head_dim]
if self.config.new_decoder_architecture:
key_states = self._expand_states(key_states)
value_states = self._expand_states(value_states)
return (key_states, value_states)
def _reorder_cache_from_falcon_to_bloom(self, key_value: KVCache) -> KVCache:
key_states, value_states = key_value
if self.config.new_decoder_architecture:
key_states = self._collapse_states(key_states)
value_states = self._collapse_states(value_states)
assert key_states.shape == value_states.shape # Both are [batch_size * num_kv_heads, seq_len, head_dim]
key_states = key_states.permute(0, 2, 1)
return (key_states, value_states)
def _expand_states(self, state: torch.Tensor) -> torch.Tensor:
batch_size_x_num_kv_heads, seq_len, head_dim = state.shape
batch_size = batch_size_x_num_kv_heads // self.config.num_kv_heads
state = state.view(batch_size, self.config.num_kv_heads, 1, seq_len, head_dim)
state = state.expand(-1, -1, self.config.num_key_value_groups, -1, -1) # No copy
state = state.reshape(batch_size * self.config.num_attention_heads, seq_len, head_dim) # Involves a copy
return state
def _collapse_states(self, state: torch.Tensor) -> torch.Tensor:
batch_size_x_num_attn_heads, seq_len, head_dim = state.shape
batch_size = batch_size_x_num_attn_heads // self.config.num_attention_heads
state = state.view(batch_size, self.config.num_kv_heads, self.config.num_key_value_groups, seq_len, head_dim)
state = state[:, :, 0]
state = state.view(batch_size * self.config.num_kv_heads, seq_len, head_dim)
return state