mirror of
https://github.com/bigscience-workshop/petals
synced 2024-10-31 09:20:41 +00:00
c2cb6d19ae
deflapify tests
47 lines
1.9 KiB
Python
47 lines
1.9 KiB
Python
import random
|
|
|
|
import pytest
|
|
import torch
|
|
import transformers
|
|
from tensor_parallel import TensorParallel
|
|
from tensor_parallel.slicing_configs import get_bloom_config
|
|
from test_utils import MODEL_NAME
|
|
|
|
from petals.bloom.from_pretrained import load_pretrained_block
|
|
|
|
|
|
@pytest.mark.forked
|
|
@pytest.mark.parametrize("custom_config", [True, False])
|
|
@pytest.mark.parametrize("devices", [("cpu",) * 2, ("cpu",) * 3, ("cpu",) * 4])
|
|
def test_tp_block(devices, custom_config):
|
|
block_index = random.randint(0, 10)
|
|
model_config = transformers.AutoConfig.from_pretrained(MODEL_NAME)
|
|
block = load_pretrained_block(MODEL_NAME, block_index=block_index, torch_dtype=torch.float32).to(devices[0])
|
|
|
|
tp_config = None
|
|
if custom_config:
|
|
tp_config = get_bloom_config(model_config, devices)
|
|
|
|
batch_size = 2
|
|
prefix_length = 5
|
|
|
|
test_inputs1 = torch.randn(batch_size, 3, 1024, requires_grad=True, device=devices[0])
|
|
test_inputs2 = test_inputs1.detach().clone().requires_grad_(True)
|
|
test_prefix1 = torch.randn(batch_size, prefix_length, 1024, requires_grad=True, device=devices[0])
|
|
test_prefix2 = test_prefix1.detach().clone().requires_grad_(True)
|
|
grad_proj = torch.rand_like(test_inputs1)
|
|
|
|
y_prefix_ref, layer_past = block(test_prefix1, use_cache=True)
|
|
y_ref, cache_ref = block(test_inputs1, use_cache=True, layer_past=layer_past)
|
|
y_ref.backward(grad_proj)
|
|
|
|
block_tp = TensorParallel(block, devices, config=tp_config)
|
|
y_prefix, layer_past = block_tp(test_prefix2, use_cache=True)
|
|
y_ours, cache_ours = block_tp(test_inputs2, use_cache=True, layer_past=layer_past)
|
|
y_ours.backward(grad_proj)
|
|
|
|
assert torch.allclose(y_prefix, y_prefix_ref, atol=1e-5)
|
|
assert torch.allclose(y_ours, y_ref, atol=1e-5)
|
|
assert torch.allclose(test_inputs1.grad, test_inputs2.grad, atol=1e-4)
|
|
assert torch.allclose(test_prefix1.grad, test_prefix2.grad, atol=1e-4)
|