You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
petals/src/petals/utils/convert_block.py

157 lines
6.4 KiB
Python

"""
Tools for converting transformer blocks, applying quantization and/or tensor parallelism
"""
import re
from enum import Enum
from typing import Optional, Sequence
import tensor_parallel as tp
import torch
import torch.nn as nn
from hivemind.utils.logging import get_logger, use_hivemind_log_handler
from tensor_parallel.slicing_configs import get_bloom_config
from transformers import PretrainedConfig
use_hivemind_log_handler("in_root_logger")
logger = get_logger(__name__)
class QuantType(Enum):
NONE = 0
INT8 = 1 # 8-bit as in the LLM.int8() paper
NF4 = 2 # 4-bit as in the QLoRA paper
def convert_block(
block: nn.Module,
block_index: int,
config: PretrainedConfig,
tensor_parallel_devices: Sequence[torch.device],
output_device: torch.device,
quant_type: QuantType,
freeze: bool = True,
adapters: Optional[Sequence[str]] = None,
**kwargs,
) -> tp.TensorParallel:
"""
Optimize a transformer block for use in a Petals server, apply tensor parallelism and/or LLM.8bit quantization
:note: some optimizations will modify the input block in-place!
:param block: a single transformer block, either pre-trained or newly initialized
:param config: HF transformers config for the full model
:param tensor_parallel_devices: if specified, use tensor parallelism to split the model between these devices
:note: if there is only a single device, model wil still be wrapped with TensorParallel (for uniformity)
:param output_device: if tensor_parallel_devices is True, output
:param quant_type: quantization type
:param freeze: if True (default), make all module parameters non-trainable
:return: a module that acts like the original block, but runs with all specified optimizations
"""
if freeze:
block.requires_grad_(False)
block = make_tensor_parallel(block, config, tensor_parallel_devices, output_device=output_device)
if quant_type != QuantType.NONE:
block = quantize_module(block, quant_type=quant_type)
for shard, device in zip(block.module_shards, block.devices):
shard.to(device)
if adapters:
from petals.utils.peft import add_adapter_to_block, create_lora_adapter, load_peft
create_lora_adapter(block, quant_type=quant_type)
for adapter_name in adapters:
adapter_config, adapter_state_dict = load_peft(
adapter_name,
block_idx=block_index,
**kwargs,
)
add_adapter_to_block(block, block_index, adapter_name, adapter_config, adapter_state_dict)
return block
def quantize_module(model: nn.Module, *, quant_type: QuantType) -> nn.Module:
# Import bitsandbytes only when necessary, so Petals runs on platforms not supported by bitsandbytes
import bitsandbytes as bnb
for n, module in model.named_children():
if len(list(module.children())) > 0:
quantize_module(module, quant_type=quant_type)
if isinstance(module, torch.nn.Linear) and n not in ["lm_head", "score"]:
assert module.weight.device.type == "cpu", f"expected linear layers on CPU, got {module.weight.device}"
if quant_type == QuantType.INT8:
model._modules[n] = bnb.nn.Linear8bitLt(
module.in_features,
module.out_features,
module.bias is not None,
has_fp16_weights=False,
threshold=6.0, # Default from the LLM.int8() paper
)
model._modules[n].weight = bnb.nn.Int8Params(
module.weight.data, requires_grad=False, has_fp16_weights=False
).to(module.weight.dtype)
elif quant_type == QuantType.NF4:
compress_statistics = True
model._modules[n] = bnb.nn.LinearNF4(
module.in_features,
module.out_features,
module.bias is not None,
compress_statistics=compress_statistics,
)
model._modules[n].weight = bnb.nn.Params4bit(
module.weight.data,
requires_grad=False,
quant_type="nf4",
blocksize=64,
compress_statistics=compress_statistics,
).to(module.weight.dtype)
else:
raise ValueError(f"Unsupported quant_type='{quant_type}'")
model._modules[n].bias = module.bias
return model
def make_tensor_parallel(
block: nn.Module, model_config: PretrainedConfig, devices: Sequence[torch.device], output_device: torch.device
) -> nn.Module:
if model_config.model_type == "bloom":
tp_config = get_bloom_config(model_config, devices)
del tp_config.state_rules[re.compile(".*word_embeddings.weight$")]
else:
if len(devices) > 1:
logger.warning("Tensor parallelism is not tested for models other than BLOOM yet, proceed with caution")
tp_config = None
tp_block = tp.TensorParallel(block, devices, config=tp_config, output_device=output_device, delay_init=True)
total_heads = 0
for tp_shard in tp_block.module_shards:
for submodule in tp_shard.modules():
if isinstance(submodule, model_config.attn_class):
total_heads += submodule.num_heads
assert total_heads == model_config.num_attention_heads
return tp_block
def check_device_balance(devices: Sequence[torch.device]):
if not all(device.type == "cuda" for device in devices):
logger.warning("Running tensor parallelism on non-GPU devices; proceed at your own risk")
return
unique_device_capabilities = set(map(torch.cuda.get_device_capability, devices))
if len(unique_device_capabilities) > 1:
logger.warning(
f"Found GPUs with uneven capabilities: {unique_device_capabilities}. "
f"Using GPUs with different performance will cause the server to wait for the slowest GPU."
)
memory_per_device = tuple(torch.cuda.get_device_properties(device).total_memory for device in devices)
used_memory = min(memory_per_device) * len(memory_per_device)
wasted_memory_rate = (sum(memory_per_device) - used_memory) / sum(memory_per_device)
if wasted_memory_rate > 0.05:
logger.warning(
f"GPU devices have highly uneven memory, {wasted_memory_rate * 100:.2f}% memory is wasted. "
f"Consider running high-memory GPUs in a separate server."
)