""" Tools for converting transformer blocks, applying quantization and/or tensor parallelism """ import os import re from typing import Sequence import tensor_parallel as tp import torch import torch.nn as nn from hivemind.utils.logging import get_logger, use_hivemind_log_handler from tensor_parallel.slicing_configs import get_bloom_config from transformers import PretrainedConfig use_hivemind_log_handler("in_root_logger") logger = get_logger(__name__) def convert_block( block: nn.Module, config: PretrainedConfig, tensor_parallel_devices: Sequence[torch.device], output_device: torch.device, load_in_8bit: bool, threshold: float = 6.0, freeze: bool = True, ) -> tp.TensorParallel: """ Optimize a transformer block for use in a Petals server, apply tensor parallelism and/or LLM.8bit quantization :note: some optimizations will modify the input block in-place! :param block: a single transformer block, either pre-trained or newly initialized :param config: HF transformers config for the full model :param tensor_parallel_devices: if specified, use tensor parallelism to split the model between these devices :note: if there is only a single device, model wil still be wrapped with TensorParallel (for uniformity) :param output_device: if tensor_parallel_devices is True, output :param load_in_8bit: if True, use LLM.int8() quantization to reduce the model memory footprint :param threshold: a quantization threshold from LLM.int8() paper ( https://arxiv.org/abs/2208.07339 ) :param freeze: if True (default), make all module parameters non-trainable :return: a module that acts like the original block, but runs with all specified optimizations """ if freeze: for param in block.parameters(): param.requires_grad = False block = make_tensor_parallel(block, config, tensor_parallel_devices, output_device=output_device) if load_in_8bit: block = replace_8bit_linear(block, threshold=threshold) for shard, device in zip(block.module_shards, block.devices): shard.to(device) return block def replace_8bit_linear(model: nn.Module, threshold=6.0) -> nn.Module: """ A helper function to convert all `torch.nn.Linear` modules to `bnb.nn.Linear8bit` modules from the `bitsandbytes` library. This will enable running your models using mixed int8 precision as described by the paper `GPT3.int8(): 8-bit Matrix Multiplication for Transformers at Scale`. Make sure `bitsandbytes` compiled with the correct CUDA version of your hardware is installed before running this function. `pip install -i https://test.pypi.org/simple/ bitsandbytes-cudaXXX` with `XXX` is your CUDA version (e.g., 11.6 = 116) The function will be run recursively and replace all `torch.nn.Linear` modules except for the `lm_head` and 'score' that should be kept as a `torch.nn.Linear` module. Parameters: model (`torch.nn.Module`): Input model or `torch.nn.Module` as the function is run recursively. threshold (`float`, *optional*): `int8_threshold` for outlier detection as described in the formentioned paper. This parameters is set to `6.0` as described by the paper. """ # Import bitsandbytes only when necessary, so Petals runs on platforms not supported by bitsandbytes os.environ["BITSANDBYTES_NOWELCOME"] = "1" import bitsandbytes as bnb for n, module in model.named_children(): if len(list(module.children())) > 0: replace_8bit_linear(module, threshold) if isinstance(module, torch.nn.Linear) and n not in ["lm_head", "score"]: assert module.weight.device.type == "cpu", f"expected linear layers on CPU, got {module.weight.device}" model._modules[n] = bnb.nn.Linear8bitLt( module.in_features, module.out_features, module.bias is not None, has_fp16_weights=False, threshold=threshold, ) model._modules[n].weight = bnb.nn.Int8Params( module.weight.data, requires_grad=False, has_fp16_weights=False ).to(module.weight.dtype) model._modules[n].bias = module.bias return model def make_tensor_parallel( block: nn.Module, model_config: PretrainedConfig, devices: Sequence[torch.device], output_device: torch.device ) -> nn.Module: if model_config.model_type == "bloom": tp_config = get_bloom_config(model_config, devices) del tp_config.state_rules[re.compile(".*word_embeddings.weight$")] else: if len(devices) > 1: logger.warning("Tensor parallelism is not tested for models other than BLOOM yet, proceed with caution") tp_config = None tp_block = tp.TensorParallel(block, devices, config=tp_config, output_device=output_device, delay_init=True) total_heads = 0 for tp_shard in tp_block.module_shards: for submodule in tp_shard.modules(): if isinstance(submodule, model_config.attn_class): total_heads += submodule.num_heads assert total_heads == model_config.num_attention_heads return tp_block def check_device_balance(devices: Sequence[torch.device]): if not all(device.type == "cuda" for device in devices): logger.warning("Running tensor parallelism on non-GPU devices; proceed at your own risk") return unique_device_capabilities = set(map(torch.cuda.get_device_capability, devices)) if len(unique_device_capabilities) > 1: logger.warning( f"Found GPUs with uneven capabilities: {unique_device_capabilities}. " f"Using GPUs with different performance will cause the server to wait for the slowest GPU." ) memory_per_device = tuple(torch.cuda.get_device_properties(device).total_memory for device in devices) used_memory = min(memory_per_device) * len(memory_per_device) wasted_memory_rate = (sum(memory_per_device) - used_memory) / sum(memory_per_device) if wasted_memory_rate > 0.05: logger.warning( f"GPU devices have highly uneven memory, {wasted_memory_rate * 100:.2f}% memory is wasted. " f"Consider running high-memory GPUs in a separate server." )