import random import hivemind import pytest import torch from test_utils import * from petals.bloom.from_pretrained import load_pretrained_block from petals.client import DistributedBloomConfig from petals.client.remote_sequential import RemoteTransformerBlock from petals.data_structures import UID_DELIMITER from petals.dht_utils import get_remote_module @pytest.mark.forked def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3): dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True) config = DistributedBloomConfig.from_pretrained(MODEL_NAME) for block_index in random.sample(range(config.n_layer), 3): remote_block = get_remote_module(dht, f"{MODEL_NAME}{UID_DELIMITER}{block_index}", config) assert isinstance(remote_block, RemoteTransformerBlock) inputs = torch.randn(1, 8, config.hidden_size) outputs_forward = remote_block(inputs) outputs_inference = [] with remote_block.inference_session(max_length=inputs.shape[1]) as sess: for i in range(inputs.shape[1]): outputs_inference.append(sess.step(inputs[:, i : i + 1, :])) # test that max length is respected with pytest.raises(ValueError, match=r"Maximum length exceeded") as exc_info: sess.step(inputs[:, -1:, :]) assert "Maximum length exceeded" in repr(exc_info.value) outputs_inference = torch.cat(outputs_inference, dim=1) ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32) (outputs_local,) = ref_block(inputs) assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward) assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)