import pytest import torch import transformers from hivemind import get_logger from test_utils import * from transformers.generation import BeamSearchScorer from transformers.models.bloom import BloomForCausalLM from petals.client.remote_model import DistributedBloomForCausalLM logger = get_logger(__file__) @pytest.mark.forked @pytest.mark.parametrize("pass_empty_tensors", (True, False)) def test_full_model_exact_match(pass_empty_tensors: bool, atol_forward=1e-3, atol_inference=1e-3): tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME) model = DistributedBloomForCausalLM.from_pretrained( MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32 ) config = model.config assert isinstance(model, DistributedBloomForCausalLM) assert len(model.transformer.h) == model.config.n_layer test_inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"] with torch.inference_mode(): parallel_outputs = model.forward(test_inputs).logits assert torch.all(torch.isfinite(parallel_outputs)) logger.info("Forward outputs are finite") embs = model.transformer.word_embeddings(test_inputs) embs = model.transformer.word_embeddings_layernorm(embs) recurrent_outputs = [] with model.transformer.h.inference_session(max_length=embs.shape[1]) as sess: if pass_empty_tensors: recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size))) for t in range(embs.shape[1]): recurrent_outputs.append(sess.step(embs[:, t : t + 1, :])) if t == int(embs.shape[1] // 2) and pass_empty_tensors: recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size))) recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size))) recurrent_outputs = torch.cat(recurrent_outputs, dim=1) recurrent_outputs = model.transformer.ln_f(recurrent_outputs) recurrent_outputs = model.lm_head(recurrent_outputs) assert torch.allclose(recurrent_outputs, parallel_outputs, rtol=0, atol=atol_inference) logger.info("Inference is consistent with forward") del model, embs, recurrent_outputs if REF_NAME: ref_model = transformers.BloomForCausalLM.from_pretrained( REF_NAME, low_cpu_mem_usage=True, torch_dtype=torch.float32 ) if config.vocab_size < ref_model.config.vocab_size: ref_model.resize_token_embeddings(config.vocab_size) logger.warning(f"Resized the reference model embeddings, new total = {ref_model.config.vocab_size}") dummy_mask = torch.ones_like(test_inputs, dtype=torch.bool) # note: this creates a dummy mask to make the test compatible with older transformer versions # prior to https://github.com/huggingface/transformers/pull/17837 ref_outputs = ref_model.forward(test_inputs, attention_mask=dummy_mask).logits.float() assert torch.allclose(ref_outputs, parallel_outputs, rtol=0, atol=atol_forward) logger.warning(f"Distributed forward is consistent with {type(ref_model)}.forward") del ref_model, ref_outputs, dummy_mask else: logger.warning("Did not test exact match with local model: REF_NAME environment variable is not set") assert False @pytest.mark.forked def test_greedy_generation(max_new_tokens=4): tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME) model = DistributedBloomForCausalLM.from_pretrained( MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32 ) inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"] remote_outputs = model.generate( inputs, max_new_tokens=max_new_tokens, ) hf_outputs = BloomForCausalLM.greedy_search(model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens) assert torch.allclose(remote_outputs, hf_outputs), "Greedy search results are not identical to HF" inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[ "input_ids" ] remote_outputs_batch = model.generate( inputs_batch, max_new_tokens=max_new_tokens, ) hf_outputs_batch = BloomForCausalLM.greedy_search( model, input_ids=inputs_batch, max_length=inputs_batch.size(1) + max_new_tokens ) assert torch.allclose( remote_outputs_batch, hf_outputs_batch ), "Greedy search results are not identical to HF in multibatch mode" @pytest.mark.forked @pytest.mark.parametrize("sampling_options", [dict(), dict(temperature=100.0), dict(top_k=5), dict(top_p=0.9)]) @pytest.mark.skip("Sampling is currently not consistent with outputs from Transformers") def test_sampling(sampling_options, max_new_tokens=4): torch.manual_seed(0) tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME) model = DistributedBloomForCausalLM.from_pretrained( MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32 ) logits_warper = BloomForCausalLM._get_logits_warper(model, num_beams=1, **sampling_options) inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"] with torch.random.fork_rng(): remote_outputs = model.generate( inputs, max_new_tokens=max_new_tokens, do_sample=True, **sampling_options, ) with torch.random.fork_rng(): hf_outputs = BloomForCausalLM.sample( model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens, logits_warper=logits_warper ) assert torch.allclose(remote_outputs, hf_outputs), "Sampling results are not identical to HF" inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[ "input_ids" ] with torch.random.fork_rng(): remote_outputs_batch = model.generate( inputs_batch, max_new_tokens=max_new_tokens, do_sample=True, **sampling_options, ) with torch.random.fork_rng(): hf_outputs_batch = BloomForCausalLM.sample( model, input_ids=inputs_batch, max_length=inputs_batch.size(1) + max_new_tokens, logits_warper=logits_warper, ) assert torch.allclose( remote_outputs_batch, hf_outputs_batch ), "Sampling results are not identical to HF in multibatch mode" @pytest.mark.forked def test_beam_search_generation(max_new_tokens=4, num_beams=2): tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME) model = DistributedBloomForCausalLM.from_pretrained( MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32 ) text = "A cat sat on a mat" inputs = tokenizer(text, return_tensors="pt")["input_ids"] remote_outputs = model.generate( inputs, max_new_tokens=max_new_tokens, num_beams=num_beams, ) beam_scorer = BeamSearchScorer( batch_size=inputs.size(0), num_beams=num_beams, device=inputs.device, length_penalty=0, do_early_stopping=False, ) hf_inputs = tokenizer([text] * 2, return_tensors="pt")["input_ids"] hf_outputs = BloomForCausalLM.beam_search( model, input_ids=hf_inputs, max_length=inputs.size(1) + max_new_tokens, beam_scorer=beam_scorer ) assert torch.allclose(remote_outputs, hf_outputs), "Beam search results are not identical to HF"