# Note: this code is being actively modified by justheuristic. If you want to change anything about it, please warn me. import os import hivemind import torch from src.bloom.from_pretrained import load_pretrained_block from src.client.remote_block import RemoteTransformerBlock from src.dht_utils import get_remote_module INITIAL_PEERS = os.environ.get("INITIAL_PEERS") if not INITIAL_PEERS: raise RuntimeError("Must specify INITIAL_PEERS environment variable with one or more peer ids") INITIAL_PEERS = INITIAL_PEERS.split() BLOCK_UID = os.environ.get("BLOCK_UID") if not BLOCK_UID: raise RuntimeError("Must specify BLOCK_UID as an index of a transformer block to be tested") REF_NAME = os.environ.get("REF_NAME", "bigscience/test-bloomd-6b3") REF_INDEX = int(os.environ.get("REF_INDEX", BLOCK_UID[-1].split(".")[-1])) def test_remote_block_exact_match(atol_forward=1e-5, atol_inference=1e-3): dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True) remote_block = get_remote_module(dht, BLOCK_UID) assert remote_block is not None, f"Could not find {BLOCK_UID} in DHT" assert isinstance(remote_block, RemoteTransformerBlock) inputs = torch.randn(1, 8, 4096) (outputs_forward,) = remote_block(inputs) outputs_inference = [] with remote_block.begin_inference_session() as sess: for i in range(inputs.shape[1]): outputs_inference.append(sess.step(inputs[:, i : i + 1, :])) outputs_inference = torch.cat(outputs_inference, dim=1) ref_block = load_pretrained_block(REF_NAME, REF_INDEX, torch_dtype=torch.float32) (outputs_local,) = ref_block(inputs) assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward) assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)