from typing import Optional, Tuple import pytest import torch from transformers.models.falcon.modeling_falcon import FalconDecoderLayer, FalconModel, build_alibi_tensor from petals.utils.auto_config import AutoDistributedConfig from petals.utils.convert_block import QuantType, convert_block from test_utils import MODEL_NAME KVCache = Tuple[torch.Tensor, torch.Tensor] class UnoptimizedWrappedFalconBlock(FalconDecoderLayer): def forward( self, hidden_states: torch.Tensor, *args, attention_mask: Optional[torch.Tensor] = None, alibi: Optional[torch.Tensor] = None, layer_past: Optional[KVCache] = None, use_cache: bool = False, **kwargs, ): batch_size, seq_length = hidden_states.shape[:2] if layer_past is not None: layer_past = self._reorder_cache_from_bloom_to_falcon(layer_past) past_length = 0 if layer_past is None else layer_past[0].shape[1] seq_length_with_past = seq_length + past_length attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) if alibi is None and self.config.alibi: alibi = build_alibi_tensor(attention_mask, num_heads=self.num_heads, dtype=hidden_states.dtype) attention_mask = FalconModel._prepare_attn_mask(attention_mask, (batch_size, seq_length), past_length) outputs = super().forward( hidden_states, *args, attention_mask=attention_mask, alibi=alibi, layer_past=layer_past, use_cache=use_cache, **kwargs, ) if use_cache: present_key_value = outputs[-1] present_key_value = self._reorder_cache_from_falcon_to_bloom(present_key_value) outputs = outputs[:-1] + (present_key_value,) return outputs def _reorder_cache_from_bloom_to_falcon(self, key_value: KVCache) -> KVCache: key_states, value_states = key_value key_states = key_states.permute(0, 2, 1) assert key_states.shape == value_states.shape # Both are [batch_size * num_kv_heads, seq_len, head_dim] if self.config.new_decoder_architecture: key_states = self._expand_states(key_states) value_states = self._expand_states(value_states) return (key_states, value_states) def _reorder_cache_from_falcon_to_bloom(self, key_value: KVCache) -> KVCache: key_states, value_states = key_value if self.config.new_decoder_architecture: key_states = self._collapse_states(key_states) value_states = self._collapse_states(value_states) assert key_states.shape == value_states.shape # Both are [batch_size * num_kv_heads, seq_len, head_dim] key_states = key_states.permute(0, 2, 1) return (key_states, value_states) def _expand_states(self, state: torch.Tensor) -> torch.Tensor: batch_size_x_num_kv_heads, seq_len, head_dim = state.shape batch_size = batch_size_x_num_kv_heads // self.config.num_kv_heads state = state.view(batch_size, self.config.num_kv_heads, 1, seq_len, head_dim) state = state.expand(-1, -1, self.config.num_key_value_groups, -1, -1) # No copy state = state.reshape(batch_size * self.config.num_attention_heads, seq_len, head_dim) # Involves a copy return state def _collapse_states(self, state: torch.Tensor) -> torch.Tensor: batch_size_x_num_attn_heads, seq_len, head_dim = state.shape batch_size = batch_size_x_num_attn_heads // self.config.num_attention_heads state = state.view(batch_size, self.config.num_kv_heads, self.config.num_key_value_groups, seq_len, head_dim) state = state[:, :, 0] state = state.view(batch_size * self.config.num_kv_heads, seq_len, head_dim) return state @pytest.mark.skipif("falcon" not in MODEL_NAME, reason="This test is applicable only to Falcon models") @pytest.mark.parametrize("device", ["cpu", "cuda:0"]) @pytest.mark.forked def test_falcon(device): if device == "cuda:0" and not torch.cuda.is_available(): pytest.skip("CUDA tests can be run only in CUDA-enabled setups") config = AutoDistributedConfig.from_pretrained(MODEL_NAME) tensor_parallel_devices = (device,) dtype = torch.bfloat16 quant_type = QuantType.NONE block = config.block_class(config).to(dtype) block = convert_block(block, 0, config, tensor_parallel_devices, device, quant_type=quant_type, freeze=True) unopt_block = UnoptimizedWrappedFalconBlock(config).to(dtype) unopt_block = convert_block( unopt_block, 0, config, tensor_parallel_devices, device, quant_type=quant_type, freeze=True ) unopt_block.load_state_dict(block.state_dict()) cache = unopt_cache = None with torch.inference_mode(): for length in [10, 1, 1, 1]: dummy_input = torch.randn(1, length, config.hidden_size, device=device, dtype=dtype) block_output, cache = block(dummy_input, layer_past=cache, use_cache=True) unopt_block_output, unopt_cache = unopt_block(dummy_input, layer_past=unopt_cache, use_cache=True) assert torch.allclose(block_output, unopt_block_output, atol=1e-6, rtol=0), length assert torch.allclose(cache[0], unopt_cache[0], atol=1e-6, rtol=0), length assert torch.allclose(cache[1], unopt_cache[1], atol=1e-6, rtol=0), length