import random import pytest import torch from petals import AutoDistributedConfig, RemoteSequential from petals.server.block_functions import MAX_SHORT_INFERENCE_TOKENS from petals.server.from_pretrained import load_pretrained_block from test_utils import * @pytest.mark.forked def test_remote_block_exact_match(atol_forward=1e-4, atol_inference=1e-3): config = AutoDistributedConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS) remote_sequential = RemoteSequential(config) block_index = random.randint(0, config.num_hidden_layers - 1) remote_block = remote_sequential[block_index] inputs = torch.randn(1, MAX_SHORT_INFERENCE_TOKENS + 8, config.hidden_size) outputs_forward = remote_block(inputs) outputs_inference = [] with torch.inference_mode(): with remote_block.inference_session(max_length=inputs.shape[1]) as sess: # Test long inference (unmerged inference pools) outputs_inference.append(sess.step(inputs[:, : MAX_SHORT_INFERENCE_TOKENS + 1, :])) # Test short inference (merged inference pools) for i in range(MAX_SHORT_INFERENCE_TOKENS + 1, inputs.shape[1]): outputs_inference.append(sess.step(inputs[:, i : i + 1, :])) # test that max length is respected with pytest.raises(ValueError, match=r"Maximum length exceeded") as exc_info: sess.step(inputs[:, -1:, :]) assert "Maximum length exceeded" in repr(exc_info.value) outputs_inference = torch.cat(outputs_inference, dim=1) ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32) (outputs_local,) = ref_block(inputs) assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward) assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)