Since `petals.ml` DNS record is still unavailable, we're switching everything to https://petals.dev
Co-authored-by: Aleksandr Borzunov <hxrussia@gmail.com>
The notebook intros were outdated and mentioned the 6B model, while the actual code already runs the 176B model. This led to confusion among our users in Discord.
* Don't count open fds since it leads to AccessDenied crashes on some machines
* Use --load_in_8bit=False by default in case of tensor parallelism
* Install petals from PyPI in fine-tuning tutorials
1. Added `from petals.client import *` to `petals/__init__.py`, so you can write just that:
```python
from petals import DistributedBloomForCausalLM
```
I didn't do the same with server, since its classes are supposed to by used by `petals.cli.run_server`, not end-users. Though it's still possible to do `from petals.server.smth import smth` if necessary.
2. Fixed one more logging issue: log lines from hivemind were shown twice due to a bug in #156.
3. Removed unused `runtime.py`, since the server actually uses `hivemind.moe.Runtime`, and `runtime.py` has no significant changes comparing to it.
1. Petals can be now installed using `pip install git+https://github.com/bigscience-workshop/petals`
- In case if you already cloned the repo, you can do `pip install .` or `pip install .[dev]`
2. Moved `src` => `src/petals`
- Replaced `from src.smth import smth` with `from petals.smth import smth`
3. Moved `cli` => `src/petals/cli`
- Replaced `python -m cli.run_smth` with `python -m petals.cli.run_smth` (all utilities are now available right after pip installation)
4. Moved the `requirements*.txt` contents to `setup.cfg` (`requirements.txt` for packages is not supported well by modern packaging utils)
5. Increased the package version from `0.2` to `1.0alpha1`
The goals of these changes are:
- Make Petals work in Colab right after just doing `pip install -r requirements.txt`
- Make tests work independently of the protobuf package version chosen while installing dependencies